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Rays, Beams, and Modes Pertaining to the Excitation

of Dielectric Waveguides

LEOPOLD B. FELSEN, FELLOW, IEEE, AND SANG-YUNG SHIN

Absfract—The two-dimensional problem of excitation of an in-
homogeneous dielectric layer by a Gaussian beam is considered,
with emphasis on useful representations that treat the field either
in terms of multiple reflections or in terms of guided modes. A
recently developed method is employed whereby the beam fields are
generated from line source fields by assigning a complex value to
the source coordinates. When applied to the asymptotic solution for
the line source field, this procedure furnishes a simple and quanti-
tative relation between line-source-excited ray optics and paraxial
beam optics. It also clarifies the role of lateral ray and beam shifts
for reflection at a boundary with incidence-angle-dependent reflec-
tion coefficient, especially when multiply reflected fields are con-

verted into modal form. Results are given for beams which are
reflected at both boundaries, reflected at one boundary and re-
fracted before reachkrg the other boundary, and trapped by refrac-
tion without reaching either boundary. In the first case, conversion
‘to modal form is more convenient at large distances whereas in the
latter case, paraxial beam tracking is preferable.

I. INTRODUCTION

FOR a better understanding of relevant wave phe-

nomena, there has been a concern in the literature on

integrated and fiber optics with the relation between

rays and modes in dielectric waveguides, with the ray-

optical interpretation of modal phase and group velocity,

with the propagation of beams, and with other aspects of

modal propagation [1], [2]. The purpose of the present

paper is to present a unified treatment of these phenomena

by considering explicitly the problem of excitation of a

dielectric waveguide by a localized source, such as a line

or point source and a well-collimated Gaussian beam. It is

found that consideration of the source problem inter-

relates various facets of wave propagation that have pre-

viously been considered separately and individually.

These facets include the tracking of an obliquely incident

beam by multiple reflection, the significance of lateral

ray and beam shifts in the reflection process, the conversion
of multiply reflected fields into waveguide modes and the

role of the lateral shifts in the conversion process, the
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direct excitation of waveguide modes, and finally, the

range where one field representation (multiply reflected

or modal) is preferable over the other.

The specification of a localized source is essential to the

present study, since the resulting excitation of a spectrum

of wavenumbers makes possible the systematic explora-

tion of the wave processes alluded to above. For two-

dimensional or three-dimensional wave problems, a line

source or point source, respectively, forms a suitable

prototype. Such sources, being omnidirectional, actually

give rise to a richer variety of wave phenomena than those

encountered when the wavenumber spectrum is narrowly

confined, as in a well-collimated beam. However, by a

recently developed method [3], [4], it is possible to’ con-

vert incident cylindrical or spherical wave fields into two-

dimensional or three-dimensional paraxial Gaussian beams,

respectively, on replacing the real source coordinate by a

complex value. Thus previously developed Green’s func-

tions for dielectric waveguides can be utilized directly

for construction of field solutions when the incident excita-

tion is a Gaussian beam. In following this procedure here,

heavy reliance is placed on an earlier publication [5] deal-

ing with rays, modes, ray-modal conversion, etc., of two-

dimensional fields in an inhomogeneous layer with im-

pedance walls, excited by an omnidirectional source or by

a source with known far zone radiation pattern f($).

For simplicity, the analysis will be restricted to the two-

dimensional case, with only a brief mention of the gen-

eralization to three dimensions.

Turning now to the actual contents of this paper, we

begin in Section 11 with a summary of the complex-source-

point method when applied to a point or line source in free

space; this demonstrates the ability to generate an in-

cident Gaussian beam from a spherical or cylindrical wave

by assigning to the source a complex Iocation. To under-

stand the effects of waveguide boundaries when a beam
is injected through an open end (or through an opening

in one of the walls), we consider first a homogeneously

filled, perfectly conducting, multimode parallel plane

waveguide (Section 111). By using Green’s function repre-

sentations either in the form of a mode series or an image

series, and then employing the complex-source-point

method, one obtains at once the modal excitation coeffi-

cients d’ue to an incident beam, the fields described by

tracking of multiple reflections, and an assessment of

parameter ranges where one representation is preferable

to the other. It will come as no surprise that the most

strongly excited waveguide modes are those whose plane
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wave constituents propagate in directions t9~ closest to

that of the incident beam. It is also found that with re-

spect to modal excitation, the beam acts like a directive

source with a radiation pattern that decays exponentially

away from t$e beam axis.

In Section IV the problem is generalized to an in-

homogeneous layer bounded by surface impedance w@ls.

As mentioned earlier, thk model is chosen because all of

the relevant formulas pertaining to excitation by an iso-

tropic or directional line source have already been de-

veloped [5]. These formulas, summarized in Section IV-A,

comprise rays and modes which 1) are trapped in the

vicinity of the layer axis by refraction due to the medium

inhomogeneity, 2) are reflected at one boundary but re-

fracted before reaching the other boundary, and 3) are

reflected at both boundaries. Cases 2) and 3) involve

lateral shifts of reflected rays, which are discussed in

detail. It is found that while lateral shifts should always

be included in the description of reflection of rays emanat-

ing from a localized source, the effect of such shifts is

generally insignificant when only a few reflections are in-

volved; however, the correct description of the cumulative

effect of many reflections, and especially, the conversion

of multiply reflected ray fields into modal fields requires

r-etention of lateral shifts. Since conventional geometric-

optical tracking procedures for phase and amplitude of the

quasi-optic field can easily be adapted to the laterally

shifted paths [6], [7], this poses no hardship. The effect

of replacing the real source point in the formulas of Sec-

tion IV-A by a complex value is examined in Section IV-B,

It is found that when the medium inhomogeneity can be

neglected in the vicinity of the waist of the incident beam,

the compiex-source-point field decays in Gaussian fashion

away from a central ray, the beam axis. Depending on the

choice of the complex source point, the beam axis may

belong to any of the categories 1), 2), and 3) noted above.

The beam characteristics for these cases are discussed,

together with the excitation of modal fields. In particular,

it is shown that the paraxial beam field can be described

completely in terms of parameters pertaining to the line-

source-excited field on a ray coincident wiih the beam

axis. This observation provides a direct and quantitative

correspondence between paraxial beam optics and line-

source-excited ray optics.

The results obtained for beam excitation of an inhomo-

geneous layer with impedance walls apply also when the

layer boundaries are formed by a discontinuity in refrac-

tive index, provided that the beam is incident at an angle

that assures the occurrence of total reflection at the bound-

aries (or continuous refraction before reaching the bound-

aries). In that event, excitation of the continuous mode

spectrum is negligible (see Appendix III). Treatment of

the discrete mode spectrum is the same as for the layer

with impenetrable impedance walls provided only that the

impedance-wall reflection coefficients are replaced by the

interface reflection coefficients. These considerations are

summarized in Section IV-C. General conclusions to be

drawn from this study are presented in Section V.

II. THE INCIDENT BEAM FIELD

The time-harmonic scalar three-dimensional Green’s

function, w~~ich satisfies the radiation condition in a homog-

eneous unbounded Iossless medium with wavenurnber lc,

is given by

G,(r,,’) = ‘X[::Q) (1)

where Q is the distance from the source point r’ to the ob-

servation point r,

Q=]r–r’l=[(x– 2?)2 + (?J — ?J’)2 + (% — ~’)2]1/2

(la)

and the time dependence exp ( — i~~) has been suppressed.

when the source point r’ is assigned the complex value

rb’ = (O,O,i&), & >0, the real distance Q is replaced by

the complex distance

(k = [~’ + Y2 + (.z – ib)’]’l’, Re (& >0 (2)

which may be approximated in the paraxial region near

the z axis as

and in the far zone as

Q, Nr–i6cos0 r >> kb’ ‘r’ = (X2 + ‘lJZ+ 22)112

(4)

where cos o = z/r. Substitution of (3) or (4) into (I)

shows that the complex-source-point solution G\ ( r,rb’ )

represents in the region z > 0 a field that behaves like a

rotationally symmetric Gaussian beam in the paraxial

region about the beam axis z, with amplitude exp (1c6)

on the axis, The exponential dependence exp [– 1; (:v2 +

Y2) /2~] in the z = O plane identifies that plane as the

focal plane and (25/rl) 112 as the commonly defined half

width w. at the waist of the beam. Retention of (2) in (1)

provides an exact solution of the scalar wave equation that

is valid at arbitrary observation points (except z = O,

X2 + yz = 82) and satisfies Wa the assumption Re @ > 0

the radiation condition at all observation’ angles at in-

finity (i.e., the fields are outgoing in z <0 and z > O);

by alternative definitions of the principal branch of (&,

one may generate a field that is incoming in z .< 0 and

outgoing in z ;> O and thereby describes a Gaussian beam

for all z. Since we shall be interested only in the perturba-

tion of the beam after it has passed through its focus, the

specification Re Qb > 0 is adequate and describes in a

simple manner the analytic continuation of Q from real r’

to complex rb’; th~ field may accordingly be viewed as

having been established by an equivalent source distribu-
tion that occu~pies the region X2 + g’ < @ in the z = O

plane.

It is easily verified that when the complex source point

is chosen as

rb’ = ro + ‘ib (5)
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Fig. 1. Two-dimensional beam corresponding to~r(l?, R. + ib).
The focus lies at R. and the beam axis along b.

where r. and $ are real vectors, the resulting field Gf (r,yb’)

repres~nts a beam whose focus is at 70 and whose axis is

along b.
By analogous considerations (Fig. 1), one establishes

for the two-dimensional (x-independent) case that the

two-dimensional scalar Green’s function

f5f(R,R’)=*iH.(’)(I@ Q= [(u– Y’)z+(z–z’)’]’/Z,
(6)

furnishes atwo-dimensional beam solution when the dis-

tance~from thereal sou;cepoint l?’ = (y ’,z’) is replaced

by the distance ~b from the complex source point Rb’ =

RO + ib. To achieve a collimated beam, it is assumed that

kb >>1, where h = \ b I , so that the asymptotic approxi-

mation

is adequate. However, as for the three-dimensional case,

~j (R,Rb’) in (6) is an exact solution of the two-dimensional

wave equation.

Vector beam fields may be generated from expressions

for the vector fields due to an electric or magnetic current

element on replacing the real source point location r’ by

the complex value rb’ in (5). If t% vector beam is to have

a TEM field on the beam axis b, the ori~ntation of the

current element must be perpendicular to b [4].”

III. BIEAM-TO-MODE CONVERSION IN A

WAVE GUIDE WITH PERFECTLY
COND~CTING BOUNDARIES

To illustrate the mechanism of waveguide mode excita-
tion when a beam is launched into a r&i’on with parallel

plane boundaries, it is appropriate to consider first a

homogeneously filled waveguide with perfectly conducting

1

wa k. For simplicity, w.e deal only with the two-dimen-

sio al case. Sine’e the complex displacement of the source

co rdinate of an incident cylindrical wave generates an

inc dent” beam that is Gaussian in the paraxial region, the

be m excitation-of a parallel plane waveguide with bound-

ari s at y = O, d follows at once from the known solution
of he two-dimensional Green’s function for that region

by analytic continuation from R’” to complex Rb’. Two

alternative representations are of interest. The first,

z > z’ (8)

where d is the waveguide height and

~~ = [1 – (m~/kd)2]’j2, Im ~m 20,

expresses the field as a superposition of guided modes.

The second,

&( R,Rf) = j ~ {Ho(l) (kRgl) + Ho(’) (kR82)
s—o

. Ho(’) (kR,,) – Ho(’) (kR.4) 1

& = {(z’– i)2 + (2sd + y – Y’)2)”2

R,z = {(z – .Z’)2 + (2(.s + l)d + y’ – Y)2}1’2

R,; = {(z – Z’)z + (2sd + y + y’)z}’lz

R,4 = {(Z – .Z’)2 + (2(s + 1) d – y – y’)2)”2 (9)

expresses the field as a superposition of image fields in an

unbounded medium. The Green’s function cl vanishes

on the waveguide boundaries and is therefore proportional

to the single-component electric field E%.

To convert the incident cylindrical wave into a Gaussian

beam with focus at (y~,e~) and axis inclined at an angle

CYwith respect to z, we let

y’*Yb’=yO+ib sina z’ + Zb’ = Z,j + ib COS a,

b>Oj O<cz< *m- (lo)

to obtain from (8), for z > z.,

m7ry exp ~ikr~ (z — .2. )]
(%( R,&’) = ~ ~ sin ~

m—l It,m

. [exp (im~y~/d) exp (?cbcos (0~ + a) )

– exp ( –im~yo/d) exp (kb cos (% – a))]

(11)

where % = Cos–l r~ = sin–l (m~/kd) is the propagation

angle, measured counter-clockwise from the positive z

axis, of the constituent plane waves that synthesize the

mth mode. The series is convergent provided that the

exponential terms decay as m e co. Since r~ -+ i (mr/?cd)

as m ~ m, this implies the restriction

z>zo+b sina (12)

on the analytically continued Green’s function in (11) ;

i.e., the axial coordinate of the observation point must be

large enough to be outside the equivalent source distribu-

tion for the beam (see Fig. 1). Evidently, the mth propa-

gating mode is optimally excited when the beam direction

a coincides with the mode angle 8~. For a highly colli-

mated beam with large kb and for a + O, one may omit

the first term inside the square brackets in (11) to obtain
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Fig. 2. Beam excitation of parallel plane waveguide with perfectly
conducting walls. In the image representation, the primed images
may be ignored. After Ar reflections the’ beam width is LN =
2(2/kb)ll’R~/sin a. The multiply reflected beam is shown shaded.
When the beam is injected from the outside (seedotted portion of
the incident beam)? the results in (9), with (10), remain applicable
provided that the dlumination at the edges is negligible.

(%(R,&’) = ~ sin (ky sin 19~)exp (ikz cos tL) Am (13)
m=l

Am = exp [–ilc(y~ sin% + z. cos 19~)+ M cos (0~ – a)]

(–1)

“2kd COS &
(13a)

where Am is the mth mode excitation coefficient.

When (10) is employed in the image representation

(9), the field in the waveguide region is synthesized by

superposition of image beam contributions which account

for the effects of multiple reflections (Fig. 2). Since the

beam source is highly directive, the field is confined to

the vicinity of the multiply reflected beam axis. By this

consideration, one may omit the primed images altogether;

their contribution in the region O 5 y 5 d is negligible

when a X O (this corresponds to the transition from (11)

t.o (13)). Even the unprimed images contribute selec-

tively and may be ignored when the observation, point

lies far from those portions of the multiply reflected beam

axis corresponding to them. If it is adequate to disregard

fields whose exponential amplitude lies below a prescribed

level, the fields of interest are confined to the shaded re-

gion in Fig. 2. One notes that a single term from the series

(9), with (10), is adequate to describe the field in any of

the singly shaded portions, while two terms are adequate
in o~erlappin~ fihaded regiom; the field in the unshaded

portions is so small that it can be neglected. If the wave-

guide is wide enough to permit the propagation of many

modes, the image representation (9) is preferable over the

modal representation (11 ) or (13) as long as there is little

or no overlap among the multiply reflected beams. Since

the (l/e) angular beam width in the far zone of any of the

image sources is OW= 2 (2/kb) Ifz, the projected width

LN, parallel to the z-axis, of the beam originating at the

Nth image (i.e., after N reflections) is

LN = 2 (2/kb) l[zRN/sk cx (14)

where RN is the distance along the axis of the Nth image

beam from il~s focus to the waveguide region (see Fig. 2).

when LN exceeds the interval L = 2d cot a between suc-

cessive reflections of the beam axis (see Fig. 2), the mul-

tiply reflected beam can no longer be resolved. As the

observer moves down the guide to z > ~N, where the vi-

cinity of ZN is defined by L z LN, the field is syrrthesized

by an ever increasing number of image contributions in

(9). The collective effect of these image fields is eventually

represented more compactly by the modal sum in (13).

The modal sum thus’ accounts for the accumulation of

many multiple reflections of rays whose initial direction

lies within an angular interval of O (6L) about the beam

axis O = q. The direct conversion of the image sum into

the modal sum may be accomplished by the Poisson tra&-

formation, which thus provides the means of passing from

one representation to the other. Since the image represen-

tation (9) is intimately related to a ray-optical treatment

(use of the asymptotic form for the Hankel fuqctions (see

(7) ) actually reduces (9) to the ray-optical solution con-

structed by tracking multiply reflected rays), the Poisson

transformation permits the conversion of ray solutions

into modal solutions and, via the analytic continuation

specified in (10), the conversion of beam sqlutions into

mo,dal 8olutions. This aspect is exploited in the next sec-

tion.

Although in the preceding discussion the beam source

is located in the interior of an infini$e waveguide, one

may use the same results when the waveguide is open-

ended and the beam is injected from the outside, with the

focus lying inside the parallel plane region (see Fig. 2).

The validity of this statement follows from the highly

directive properties of the incident beam. If the focus lies

outside the parallel plane region, a divergent incident

beam may be regarded as being generated by one of the

image sources. When necessary, the interaction of an

incident beam with the edges of an open-ended waveguide

can be accounted for by use of complex source coordinates

in a ray-optical treatment of the edge diffraction problem,

but this will not be considered here [4].

It is appropriate to mention also a direct procedure for
constructing the fields excited in a waveguide by an in-

cident beam. From (7), (10), and the two-dimension@

equivalent of (4) (see also Fig. 1), it is noted that the

beam may be regarded as a distributed source with far
zone radiation pattern

~(f?) = exp [lcb cos (a – 0)] (15)

where @= a defines the beam axis. It is known that when

a source distribution with far zone pattern ~(0) is placed
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at the location R. into a parallel plane waveguide, the

field in the waveguide is given by [5]

m7ry exp [ikr~ (2 – 2.)]
G’l(R,RO) = & ~ sin ~

m=1 I%rm

. [exp (hmryO/d)~( –(%)

– exp ( –imTyO/d)~(O~) ] (16)

where % is the previously defined modal propagation

angle and z is restricted to values outside the source region.

Since the latter requirement is the same as (12), it is

evident that (15) and (16) yield the solution (11 ) that

was obtained by the complex-source-point procedure.

Thus the modal excitation problem may also be ap-

proached by viewing the beam as a highly directive

source, but this procedure lacks the versatility of the

complex-source-point method for studying other aspects

of the beam problem.

If ~Z denotes the Green’s function whose normal deriva-

tive vanishes on the boundary (i.e., QZ is proportional to

a single-component magnetic field Hz), the expression in

(8) is modified by the change “of sines to cosines and ex-

tension of the summation from m = O to m = ~ ; an ad-

d~tional fa&or (1/2) accompanies the m = O term. In

the image representation (9), the minus signs are’ changed

to plus. Correspondingly, the complex-source-point solu-

tion (11) contains an m = O term, has the sine replaced

by cosine, and the minus sign between the two terms inside

the square brackets replaced by plus (the modifications

apply also to (16)). When’ a X O, this leads instead of

(13) to

~z (R,R6’) -x ~~o exp (kz) + ~ cos (ICU sin tk)
m=l

.exp (ikz cos f3~)4~ (17)

where ~~ =’ —A%. The image representation follows from

the modified form of (9). The interpretation of these re-

sults is the same as for the polarization associated with

(% except that the present case admits of an axially propa-

gating (TEM) mode with 6~ = O.

IV. BEAM-TO-MODE CONVERSION IN A

BOUNDED INHOMOGENEOUS LAYER

The simple example in Section III of a homogeneously

filled parallel plane waveguide with perfectly conducting
walls has served to illustrate relevant propagation mecha-

nisms when the iqcident field is a well-collimated Gaussian

beam. These me~hanisms remain operative in the more

general case of a layer whose refractive index varies con-

tinuously in the transverse direction. Nonradiating guided

modes in such a layer can exist due to trapping by an ap-

propriate refractive index inhomogeneity and (or) due to the

presence of discontinuous changes in refractive index;

in weakly inhomogeneous media, the latter may be de-

scribed by an incidence-angle-dependent plane wave re-

flection coeilicient. AS before, the analysis is performed by

introducing a complex source point location into the ex-

pressions for the fields due to a line current. Since we are

interested only in the excitation of nonradiating guided

modes (for a discussion including the continuous spec-

trum, see Appendii III), it suffices to consider the prob-

lem of an inhomogeneously filled waveguide bounded by

impedance walls. The mechanism of excitation of guided

modes in such a structure by a highly directive beam re-

mains applicable when the impenetrable surface impedance

walls are replaced by penetrable boundaries across which

the refractive index is discontinuous, provided that the

incident beam at these boundaries is totally reflected and

that the surface impedance reflection coefficient is re-

placed by the interface reflection coefficient. Since the

impedance wall problem has been treated previously [5],

relevant formulas can be extracted directly for the present

discussion.

A. Line Source Field in an Inhomogeneous Layer with

Impedance Walls

Line source excitation of an inhomogeneous layer with

refractive index n(y), bounded by impedance walls at

y = Y1 and y = Y2, was previously formulated in terms

of a continuous spectrum of plane waves with z dependence

exp (ikm), — ~ < 7 < w [5, eq. (1.8) ].l The resulting

integral representation was then converted (by contour

deformation about the pole singularities (zeros of the

resonance denominator) in the integrand) into a series of

modes guided along z [5, eq. (I. 13)]; for the special case

of n = 1 and perfectly conducting walls, this series re-

duces to the one in (8) (or its counterpart for (%). Alter-

natively, by series expansion of the resonance denomina-

tor, the plane wave spectral integral was represented as

a series of simpler integrals [5, eqs. (1.20) and (1,21)],

each of which describes a single reflected constituent in

a multiple reflection decomposition of the line source field;

for the special case in Section III, these integrals are recog-

nized as Hankel functions and lead to the image repre-

sentation in (9) (or its counterpart for ~a). Assuming

that n(y) changes slowly over an interval equal to the

local wavelength, the multiple reflection integral solutions

were simplified by asymptotic approximations that pro-

vide a direct ray-optical interpretation.

For the mode series, the result for z > z’ was shown

to be [5, eq. (I,13a) ]

(18)

Nm2 =

/
‘z @mZ(y) dy. (18a)

?J1

The eigenfunctions Qm(y) satisfy the modal equation

{ }
~,+ k’[n’(y) – Tm2] %(y) = O (19)

1 Equations in [5] are denoted by a prefix (I). The .V f,oordinate in
[5] has here been replaced by y.
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subject to the boundary conditions

d%
— = kikzl,z%
dy

at y = yl,2 (19a)

where ZI,2 are constant surface impedances at Y = Y1,2.

The multiple-reflection representation

(?(R,R’) = ~ ~ 18j(R7R’) (20)
$=1S=o

involves integrals of the type (see [5, eq. (1.23)])

I,j(R,R’)

i

/

exp [dc#JR,R’ ;T) ] exp {iP~i[@l(r),dn(~)] ) ~7

-x [nZ(y) – Tz-Jl/’[nz (y’) – 72]’/’

(20a)

wherein appropriate asymptotic forms of the wave func-

tions have already been utilized and exp (i@l) and

exp (i&) are the plane wave reflection coeilicients for the

impedance boundaries at yl and ys, respectively. Hence-

forth, the wall impedance is assumed to be nondissipative

so that 41,2 are real. The evaluation of (20a) by the sta-

tionary phase method can be performed in two ways,

which differ by the inclusion, or not, of the second ex-

ponential in the phase of the integrand (note that the

second exponential does not contain the large wavenumber

it). When the second exponential is included in the phase,

the result is as follows:

~,j = &i( ~.j) exp [ik~~j(~.j) ] exp {iP.iE@l(T.j)h( ~.j)1}

where the dependence on

j = 1, one has explicitly

(21)

R and R’ has been omitted. For

exp (ire/4)
8.,(78) = ~8Tk),,2

{
– [n2(y) – 7j]’~2[n2(y’) – T?]1f2

(21C)

where 82$81/8+ is calculated by direct differentiation of

(21a). The value of rsi, abbreviated as T., is determined

so as to assure that the ray originating at R’ passes through

the observation point R. This requirement is met if r.

satisfies the ray equation, which is identical with the con-

dition for stationary points in the integrand of (20a):

The classification of the ray paths depends on the relative

(a)j=l (b)j=2

SZE F
(c)j=3 (d)j=4

Fig. 3. Trajectories of rays that strike both boundaries. The
trajectories are defined by ray equations, e.g., (22) for j = 1, and
include a lateral shift ( — 1/k)d@l/dr, or (—l/~)@dd7~ at each
reflection. When the source point has the complex value in (1 O),
the trajectory with d,’ = ~ defines the beam axis.

.—
/ \

caustic / \ Caustic
far s=O

(a)
for s=1

caustic

*
far s= I

\
\

\caustic

fars=O

(b)

Fig. 4. Trajectories of rays that do not strike both boundaries.
The trajectories are defined by ray equations modified as stated
in the text. There is no lateral shift due to contact with a caustic.
When the soln-ce point has the complex value in (10)~ the dark
trajectories define the beam axis. (Two figures are omitted here,
which describe rays leaving the source in the direction ~ < v’).
(a) Contact with one boundary. (b) Contact with neither bound-
ary.

orientation of source and observation points. For g > y’,

trajectories corresponding to various indexes j are shown

in Fig. 3. Field solutions pertaining to j = 2,3,4 take a

form similar to those for ~ = 1. The index s counts the

number of reflections experienced by the ray during its

travel from R’ to R. Note that the trajectory defined by

(22) includes a lateral shift at the boundaries. For each

index sj in (21 ), the form of the result depends on whether

the ray is reflected at the boundaries or is turned back by

refraction before reaching the boundaries. The expressions

in (21a) – (2 I c ) pertain to the former case. When the ray

is refracted and does not reach the boundary at VI, there

is no lateral shift but contact with a caustic (Fig. 4). In

this case, one employs the phase change 41 = – ~/2 in

(21b); in (21c), one puts 82&/&/ = O, and understands

the imaginary part of the square root to be chosen as nega-
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Fig. fi. Raypaths with andwithout lateral shift.

tivewhen the quantity inside the braces is negative (i.e.,

for rays beyond the turning-point but before touching

the caustic; after aray has touched thecaustic, the quan-

tityinside the braces is positive) .Moreover, ylin (21a)
is replaced by USwhere y,, the y-coordinate of the turning-

point at which the ray is horizontal, is defined by n(y.) = r.

(care must now be exercised in the calculation of 82$,1/dr2;

see [8] ). Analogous considerations apply when the ray is

refracted before striking the boundary at y.2. The angle

O. of the ray trajectory with the positive z-axis is inferred

from Snell’s law

n(y) cos [0s (y)] = 7. = constant. (23)

Thus the angle of departure &’ of the ray at the source is

obtained from n (y’) cos &’ = 7.. It should be noted that

the classical, ray tracing procedure can be adapted to the

shifted ray paths, and that the field in (21), etc., away

from the caustics (i.e., when tS.1 is finite) can be con-

structed entirely by ray methods that utilize the phase

contribution along the shifted paths and energy conser-

vation in the corresponding tubes of rays [63, [7]. The

ray tube cross section varies inversely with S.Iz.

When the second exponential in (20a) is regarded as an

amplitude factor, the stationary phase result for Isl is

again given by (21), with the following modifications:

1) A and A in (21c) are replaced by zero; and 2) the ray

equation (stationary phase condition) in (22) is replaced

by

(24)

and re everywhere is replaced by ?,. Thus (24) defines the

classical ray path without lateral shift, and (21 ) then

yields the conventional ray-optical field. Evidently,

T. # ?. for trajectories passing through R’ and R. It is

of interest to examine how the fields calculated from (21)

along a laterally shifted path (ABC in Fig. 5) differ from

those along the classical path (DE in Fig. 5). For a single

reflection, it is shown in Appendix I that when

where y is the coordinate at the boundary, both methods

of calculation yield the same result. For the special case

of a homogeneous medium with n = constant, (25) re-

duces to

n sin2 @(d@/d?.) 2—
21cQ

<<1 ?.=ncosil (25a)

where Q is the total path length along the incident and

reflected rays, and 8 is the angle of departure of the classi-

cal ray path at the source. Thus, for large ?cQand bounded

(d@/d?), one may compute the singly-reflected field by

either method. The agreement continues to hold for a

moderate number of multiple reflections where c14/cl?~ in

the inequality of (25) or (25a) is multiplied by s and the

quantity inside the braces or Q is modified to account for

multiply reflected paths. However, discrepancies will arise

for large values of s when the above inequalities are no

longer satisfied. Since the field in the waveguide is syn-

thesized by ray contributions that have experienced

many reflections, it may be anticipated that use of the

shifted path is required; when .s is large, the second ex-

ponential in the integrand of (20a)” gives rise to rapid

phase variations that must be included in the stationary

phase calculation. This expectation is confirmed when the

multiply-reflected ray contributions are converted into

guided modes.

The conversion is accomplished by the Poisson trans-

formation, which expresses a sum of functions in terms

of a sum of their Fourier transforms. Since the sum over

.sin (20) starts froms = O, the relevant form of the Poisson

sum formula is

The required analytic dependence on the summation

index s is evidently satisfied by the functions I,j in (21).

When (26) is applied to (20), with (21), and also to the

contributions from the other ray types j = 2,3,4, the

resulting integrals can be evaluated by the stationary

phase method. The procedure has been described pre-

viously [5]. It is found that, for large observation dis-

tances z, the Poisson-transformed ray series yields the

asymptotic approximation of the exact guided mode series

(18). The asymptotic approximation here implies that

the eigenfunctions @~(y) are replaced by their Wentzel–

Kramer–Brillouin (WKB) forms, which describe the mode

behavior in a slowly varying medium:

@m(y) - Am*(y)

(27)
where yln is defined by n (yl~) = r~,

-4m(Y) = [n2(y) – Tm2]-I/4

{J.exp ilc g [ns(~) – ~~z]llz d~ – in-/4
}

(27a)

‘mm

and the asterisk denotes the complex conjugate. These
formulas are valid when the modal turning point yl~ is not

contained in the layer region yl < y < y, (i.e., the mode

field fills the entire cross section (Fig. 6(a) ). When the

mode field is refracted before reaching the boundary at

Y1 (Fig. 6(b)), one has

@m(y) N Am”(y) + Am(y) yl~ < y < y, (28)
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and when the mode field is trapped entirely by refraction

(Fig. 6(c)), (28) applies as well in the region vlm < y < yz~.

In regions yl < y < yl~ of Fig. 6(b) and Y1 < Y < yl~,

Yzm < Y < Y2 of Fig. 6(c), the mode fields are evanescent

and will not be treated further (for their evaluation, see

[5]). The eigenvalues r~ for modes characterized by

Fig. 6(a) satisfy the resonance equation (modal dispersion

relation) as specified by the saddle point condition in the

integral (26) when applied to (20), with (21) (see [5,

eqs. (1.30) and (1.15a)]):

[+l(Tm) + A(rm) 1+X5 f“ [n’(g) – Tmq’t’dg= 27rm
S/l

(29)

where m is a positive integer. For modes described by

Fig. 6(b), one replaces @l in (29) by the mode caustic

phase shift (– 7r/2) and yl by yI~. For modes described

by Fig. 6(c), one replaces 41 and +2 by ( – 7r/2), yl by yl~,

and w by yz~. When 41 or 6 are replaced by ( —7r/2), it is

implied that the caustic lies far enough from the wave-

guide boundaries to render evanescent field interaction

with these boundaries negligible; if this is not the case,

one must retain a corrected form of 1#21,s. Finally, the nor-

malization factor is found to be (see [5, eq. (1.19)]) :

em(z)

jzzirs
a) mode trapped by reflection;

rm. n (y,) cos 8~’) =n(yJ COS 8A*)

~=’ ‘~mode
Y, caustic

b) mode tropped by refraction ond

reflection ; rm= n(ylm) = n(~2) cos 842}

Zczz n-.;,m
c) mode tropped by refraction ;

Tm= n (y,m)= n (y2m)

Fig. 6. Upgoing and downgoing ray congruences for trapped
modes. (a) Mode trapped by reflection. (b) Mode trapped by
refraction and reflection, (c) Mode trapped by refraction, The
boundary ~1 in (b) and the boundaries yi and YZ in (c) may be
removed without substantially affecting the mode behavior.

—Zikr~N~2 ~ —4ikR~~Dm (YI,Y2 ; 41,42), optical ray ]paths in (24)), then one may show that the

resulting resonance equation is
for Fig. 6(a) (30a)

w –4~kDm (y1m,y2; –7r/W2) , k /“2 [?# ($) – ?m2_J1f2 d{ = m~ (31)

for Fig. 6(b) (30b)
J w

- –wwm (!hn,y2?n ; – lr/2, – 7f/2) ,

for Fig. 6(c) (30c)

where R1mk the factor multiplying Am (y) in (27), and

/

b

ll~(a,b;+l,qb) =
r~ d~

1 %+42).
_—

a [n2($) – 7~s]11’ 2k arm

(30d)

The asymptotically approximated mode series then follows

from (18) on substitution of the three types of mode fields

corresponding to Fig. 6(a) – (c) ; when the refractive index

profile is such as to eliminate mode trapping as in Fig.

6(b) and (or) (c), one ornits the corresponding modal con-

tribution.
The modal resonance equation (29), or any of its modi-

fied forms as discussed above, represents the asymptotic

approximation (in a slowly varying medium) of the

rigorous equation for the modal eigenvalues (see [5, eq.

(1.12) ]). This result was obtained by converting the field

contributions described by laterally shifted ray traj ec-

tories into modal form. With reference to the asymptotic

evaluation of integral expressions for the field, it has been

necessary to include the exp [iP.i(@l,42) ] term in the

phase of the integrands when dealing with (20a) and (26).

If this term is not included in the phases of (20a) and

(26) (corresponding to use of the classical geometric-

which differs from the correct form in (29) whenever

d-w # 0. If the exp [ip8i(@lh) 1termisexcludedfromthe
phase of (20a) but included in the phase of (26), one ob-

tains a resonance equation as in (29), but with an addi-

tional term that causes the equation to be dependent on

the source and observation point coordinates. While this

additional term may be negligible under certain condi-

tions, the formulation suffers from internal inconsistencies.

It has thus been shown that conversion of source-excited

ray fields into modal fi;lds requires use of laterally shifted

ray trajectories. Since the ray trajectories emanating from

the source also describe the local energy flow, and since

the shifted trajectories are required for extraction of the

correct modal dispersion equation, it may be expected

that the group velocity of a modal field is consistent with

tracking along shifted modal rays that are defined by the

characteristic angle 0~ = Cos-l [n(y) /r~]. This has been

confirmed recently by an alternative analysis of modal

fields in a homogeneous layer [9].

B. Beam Fields in an Inhomogeneous Layer with Impedance

Walls

When the real source point R’ = (y’,z’) is replaced by

the complex source poht Rb’ = (yb’,:b’) in (10), the in-

cident field in a weakly inhomogeneous medium may be

inferred froml the s = O term in (21), with y< ,and y> re-

placed by yb’ for y > yO and y < y., respectively. The
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Y

Fig. 7. Coordinates for calculation of paraxial beam field: y =
y.–dcos e., z=z. +dsin o..

parameter r, defined in (22) is now complex; we shall

denote r, E n when b # O. If the medium near R. varies

negligibly over a length interval equal to b sin a, one may

approximate n (y’) % n (~~) and

!
v

[n’ (f) – T,’]’/’d’g
Wibsina

/
~ v[n2(g) – ,3]1/2 d& – ib[nz(yo) – ,3]1/2 Sin a.

I/o

(32)

It may then be verified by direct substitution that Tb =

TO = n (vO) cos a is a (real) solution of (22) when the

observation point R = R. lies on the ray that leaves the

point R. along the b direction. This ray is the beam axis

(see Figs. 3, 4, and 7) on which I exp (ik~,,) I assumes

its maximum value. For complex 7b corresponding to ob-

servation points off the beam axis, I-exp (ikt.1) I de-

creases, and in the paraxial region near the beam axis, the

decay is Gaussian. This property is maintained when

s # O so that the representation in (21) yields a multiply

reflected beam solution in an inhomogeneous layer. For

observation points near the beam axis, the solution for

l,, in (21) is simplified to (see Appendix II):

“ exp {is[@l(r.) + +2(7.)1) (33)

where

~sl(rb) = +a(%%To) – ~b~(w)

d2

[

ib 1
–1

+— E–
2 sin’ 0.

(33a)
n(~.) sin2 a

&I ( ‘7b)=
exp (i7r/4)

(87rk) 112 {
—n(y.)n(yo)

[

ib 1}
–1/2

. sin 0=sin a –E + (33b)
rb(y.) sin’ a

If the phase function in (21a) is denoted by Y,l(R,R’,7*),

.
one may mf er therefrom the phase function ~Sl (R., R., TO)
in (33a) and (33c). The various geometrical parameters

are defined in Fig. 7, with d representing a distance meas-

ured perpendicularly from the beam axis. The exponential

amplitude of the field is obtained from (33a) as

I exp (ikt,,) I = exp [kb~(y~) – d2/W2] (34)

where the squared l/e beam width W2 is given by

2

[

b’

1sin’ a sin’ 0.. (34a)W’ = ~ n(y~) ‘2 + ~2(yO) sin4 a

The results above apply to the case where the beam is re-

flected at both boundaries. From (34a), the beam width

expands with E, which quantity is proportional to (l/sin e.)

times the cross section of the tube o! rays surrounding

the beam axis when the excitation is due to a line current

source (see comment after (23) ). The remaining quan-

tities in (33) are likewise those encountered in the ray

optical treatment of the line source field. Thus the phase

and amplitude behavior of the paraxial beam field may

be inferred completely from the parameters describing

the line-source-excited ray-optical field along the ray that

coincides with the beam axis. Evidently, the directive

properties of the beam source discriminate against some

of the ray species in Fig. 3 in a manner analogous to that

discussed in connection with Fig. 2. The utility of the

multiply-reflected beam solution may also be assessed in

the same fashion as described in connection with (14).

When the beam axis is refracted before reaching one

or both boundaries (Fig. 4), the field is still given by (33)

provided that one makes the modifications noted after

(22). The manner of derivation of the paraxial formulas

in Appendix II invalidates the solution when the beam

axis becomes horizontal; however, (33) can be applied

to observation regions corresponding to nonhorizontal

beam directions. Since the line-source-excited ray systcm

possesses caustics whereon the ray tube cross section

vanishes [E+ O and hence S,l(~.) ~ co in (21c) ], the

ray-optical solution (21 ) cannot be employed there (due

to the coalescence of two stationary points when the ob-

servation point approaches a caustic, one requires a uni-

form evaluation of the integral in (20a) ; see [13]). How-

ever, the complex-source-point solution in (33) remains

bounded when E ~ O and therefore still furnishes the

beam field behavior. From (34a) vanishing values of E
imply minimum (~-projected) beam widths so that the

beam focuses whenever the %eam axis touches a caustic

(or a focus). Thus the line-source-excited ray system and
its caustics or foci provide direct and quantitative informa-

tion on the periodic expansion and focusing properties of

beams that are trapped by the refractive index inhomo-

geneity in the layer. Because of the periodic focusing, the

field representation in (33) is adequate for long propaga-

tion distances and thus preferable to the guided mode

expansion.
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The excitation of guided modes by the incident beam is

obtained on replacing y’ and ?’ in (18) by Yb’ and i?b’, re-

spectively, in (10). In view of the assumption of slow

variation of n(y) over a length interval equal to the pro-

jected beam parameter b sin a, one may replace % (y’)

by its asymptotic forms in (27), (28), etc., and reduce

the integrals as in’ (32). It is then found that the field

solution for z > ZO+ b sin a is given by (see also [5, eqs.

(1.34) and (1.39)]) :

G(R,R,’) = ~ _2i~~mN ~ k(y) exp [ilcr~(.z – z.) ]
m mm

(35)

where

Bn = j(f)~’)Z.41(y0, T’~) + j( –f&’)Z42(Vo,T7n) (35a)

1

[

d@~ (ye) /dyo
ul,2(yo,7-m) = ~ @m(y.) + 1(35b)

Mm (y.) sin 0~’

and

j(tlm’) = exp [kbn(yO) cos (c2 – f)~’) ]

Cos em’ = 7m/n (y.). (35C)

Note that U1 and UZ are traveling wave functions propa-

gating along the ( – y) and ( +y) directions, respectively.

As in (15), the beam acts like a directive source with

radiation pattern j(0) in a medium, whose uniform prop-

erties are the same as the local properties of the inhomo-

geneous layer near the focus at R.. The most strongly

excited modes are those whose propagation angles at R.

are closest to the beam angle a. If a ~ O, one may make

further simplifications as in (13). It should be emphasized

that while (35) is based on the assumption of a medium

with negligible variation over the equivalent source region

near Ro, the medium variation elsewhere may be arbi-

trary. When the medium varies slowly everywhere, +.

and iV~2 may be replaced by their asymptotic approxima-

tion in (27), etc., and (30).

C. Beam Fields in an Inhornogeneous Layer with Trans-

parent Walls

When the layer is separated from a surrounding low

refractive index medium by interfaces at yl,2 across which

the refractive index is discontinuous, the spectrum of

modes guided along z contains a discrete and a continuous
part. Some of the rays in Figs. 3 and 4(a) that reach the

boundaries will now give rise to transmitted as well as

reflected rays. However, rays that strike the boundaries at

incidence angles larger than the critical angle are totally

reflected, and their behavior is the same as for reflection

at an impedance boundary provided that @l and $2 denote

the phases of the reflection coefficients for the transparent

interface. When the incident field is a totally reflected

beam, the fields corresponding to the lateral wave and the

fields that penetrate the exterior region are weakly excited

I
T

Fig. 8. Inhc,mogeneous layer with transparent walls. The re-
fractive indexes for the exterior media satisfy the conditions
nl < n (VI), ?zZ< n(w). The lateral rays (dashed) and external
refracted rays (dot-dashed) are weakly excited when the beam
axis strikes the interfaces at angles greater than the critical angle
for total reflection.

and hence negligible (see Appendix III and Fig. 8). The

lateral wave fields are excited by the ray that impinges at

the critical angle of total reflection, and they shed energy

back into the slab region. Even when the source is an iso-

tropic line isource, these fields, contributed by the con-

tinuous mode spectrum, are O (kz) ‘3/2 with respect to the

guided modes and are therefore negligible at large dis-

tances. The highly directive beam source further weakens

their contribution when the (totally reflected) beam axis

is not near the critical direction. Therefore, the fields in

the layer are still given by (33) or by the modal expansion

in (35) ; concerning the latter, the +~ are now the eigen-

function for the inhomogeneous slab region.

V. SUMMARY

We have presented a study of the fields in a bounded

inhomogeneous layer when the incident field is a Gaussian

beam. The problem has been analyzed by a new method,

the complex-source-point technique, which converts exact

cylindrical wave solutions or asymptotic ray solutions into

exact or asymptotic two-dimensional beam solutions. For

this reason, detailed consideration has been given to the

Green’s function problem and to alternative representa-

tions of the line-source-excited fields. After it has been

established that a particular Green’s function representa-

tion can be continued analytically into a range of complex

source coordinates, the resulting solution provides the

beam-excited field without further calculation. The present

investigation has been restricted to configurations wherein

the medium properties vary negligibly over the equivalent

source region representative of the complex location; in this

case, the incident beam is Gaussian and the beam axis

follows a geometric-optical ray trajectory. The nature of

the fields excited by a source at a complex location when

the medium varies appreciably over the equivalent source

region remains to be further explored.

Two different formulations have been employed that

represent the field either in terms of multiple reflections

between the layer boundaries or in terms of guided modes.

The utility of each, and the conversion from one to the

other, has been analyzed, and it has been shown how the
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cumulative effect of ray fields with many reflections can be

expressed in modal form. Because a well-collimated beam

represents a highly directive source, the cornplex-source-

point resuh% have been related also to a previous study

that dealt with the radiation from a dh-ective source dis-

tribution into a layered medium [5]. While both methods

yield the same expression for the excitation of modal fields,

it has been noted that the complex-source-point method is

more versatile in being able to deal also with other aspects

of the beam problem.

Since the present analysis treats the complete excita-

tion problem by a localized source, it is sufficiently general

to clarify the interrelation and interpretation of various

ray and beam propagation processes that have usually

been considered individually under less general conditions.

The following conclusions are worthy of emphasis.

1) When a boundary has an incidence-angle-dependent

reflection coefficient, the amplitude and phase of the line-

source-excited reflected field may be computed either by

the conventional geometric-optical method based on the

classical incident and reflected ray trajectories, or by a

modified geometric-optical method that utilizes a laterally

shifted path. The laterally shifted and conventional ray

paths correspond to the inclusion, or not, of the reflection

coefficient phases into the phase of the wave bundle that

synthesizes the ray field. When the field experiences many

reflections, the reflection coefficient phases must be so

included whence the laterally shifted path is generally re-

quired.

2) When the multiply reflected ray fields in a plane

stratified layer are converted to modal form, the correct

modal dispersion equation is obtained from the laterally

shifted ray path model. Omission of the lateral shift gen-

erally leads to an incorrect dispersion equation.

3) Beam optics and source-excited ray optics have been

shown to be accommodated by the same formulation,

distinguished only by whether or not the source point

location is complex. The beam axis coincides with a real

ray trajectory. The paraxial beam field has a Gaussian

variation, but the solution remains valid also outside the

paraxial region. In this respect, the complex-source-point

method differs from other methods (for example, [11])

wherein the paraxial regime and Gaussian behavior are

assumed at the outset. The field properties in the paraxial

region can be inferred completely from those of the paraxial

tube of real rays, which is generated by a line source

located at the beam focus (see (33)). In particular, the

beam cross section expands and contracts with the paraxial

ray tube surrounding the beam axis. Thus the method pro-

vides a particularly simple and quantitative connection

between paraxial beams and source-excited paraxial rays.

4) When the line-source-excited ray field is trapped

by refraction instead of reflection, the ray family exhibits

caustics or foci. Maximum contraction of the z-projected

beam cross section takes place when the axis touches a

caustic or focus of the paraxial ray system. While the

asymptotic ray field solution due to a line source at a real
.’

location fails at a caustic or focus, the complex-source-

point (beam) solution remains valid at these real observa-

tion points.

5) The complex-source-point method converts line-

source-excited fields into beam fields even when an initially

paraxial beam is strongly scattered by localiz~d scattering

centers or by strong medium inhomogeneity. Examples

of the former process have been given elsewhere [4], [10];

applicability of the latter is illustrated by the modal ex-

citation result in (35).

Extension of the method to three-dimensional configura-

tions is straightforward. One must now examine three-

dimensional scalar and dyadic Green’s functions for scalar

and vector fields, respectively, and assign to the source

point a complex location as discussed in Section II. While

applications to three dimensions are still under study, it

is to be expected that the general behavior of alternative

representations of the beam fields deduced in this manner

will be analogous to that discussed here for the two-dimens-

ional case.

APPENDIX I

FIELD EVALUATION ALONG CONVENTIONAL

REFLECTED ANTD LATERALLY

SHIFTED PATHS

Referring to Fig. 5, with ~ = (Y’,z’) and P = (Y,z),

the phase along the conventional path DE is given by

with ?, defined by 8fi/W, = O. The phase along the later-

ally shifted path ABC is

J(7J = #(T.s)+ (1/16)4(7’s) (37)

where + is the phase of the boundary reflection coefficient

and r~ is defined by 8#/&, = O. Since T, % ?~ (we shall

assume that d@/dr~ and d2q5/dT,2 do not become excessively

large), one obtains by perturbation expansion that

(38)

When the expression for r, = ?. + 6 is substituted into

(37) and the phase is expanded to O (52), one finds that

~ (?s) = ~ (~,), subject to the restriction in (25) and those

noted above.

An interesting observation follows when the complex

source point is used to convert the line source field into an

incident beam field. It has been found previously [12]

that use of the resulting complex value of ?. in the field

expression derived from the nonshifted path predicts cor-

rectly the lateral Goos-Hanchen beam shift for a single

reflection. It then follows that a modification of this re-

sult might occur when one calculates the reflected beam

field from the complex value of r, corresponding to the

laterally shifted path. However, because of the equiv-

alence shown above, the discrepancy is found to be neg-



FELSEN AND SHIN: RAYS, BEAMS, AND MODES 161

ligible for a single or a small number of reflections. For a

large number of reflections, the laterally shifted path is

required.

APPENDIX II

SOLUTION FOR ~. IN PARAXIAL REGION

Let (J (~,~b’,r) denote the total phase so that (22) is

written t@/dr. = O. Referring to Fig. 7, we expand $

near the beam center as

J(R,R,’,r) = j(Rc,Rb’,T.) + # d + : (r – r.)
0

82$

+ —d(T– To)+::, (T–To)’+...
dToad o

(39)

where all derivatives are evaluated at T = r., R z R,,

d = O. Note that (&J/dr~) = O and t@/dd = O. Then
from atJ/aT, = 0, one finds

d2$/&-. dd
‘rG-’To=— d d4J/aro2

(40)

and, consequently,

(41)

When the various derivatives of J are evaluated, one ob-

tains the result in (33). The validity of the expansion

(39) requires that all J derivatives are bounded. Since

a2$/dT. ad = csc 8., this restricts applicability of the re-

sult to beam axis directions that deviate from the hori-

zontal (unless ds O).

APPENDIX III

VALIDITY OF COMPLEX-SOURCE-POINT

METHOD FOR LAYER WITH TRANS-

PARENT BOUNDARIES

When the line source is located inside the layer, the

eigenfunction expansion (plane wave spectral decomposi-

tion) with respect to z in [5, eq. (1.8)] remains applicable.

However, in addition to spectral pole singula;itics of the

resonance denominator (spectral poles exist only when the

layer can support trapped, nonleaky modes), the inte-

grand also contains branch point singularities. When the

integration path in the complex r-plane is deformed around

these singularities, one obtains a representation in terms

of eigenfunctions in y, which now includes a discrete spec-

trum of modes as in [.5, eq. (I. 13a)], corresponding to the

pole singularities, and a continuous spectrum of modes
arising from the branch points. The theory describing

these field representations may be found in the literature

[8, sees. 5.6 and .5.8], [13] (references in this Appendix

refer to a homogeneous layer; inhomogeneity does not

alter the basic conclusions).

It can be shown that these field representations as well

as the multiple reflection representation in [5, eq. (1.21)]

based on the expansion in [5, eq. (1.20)], remain con-

vergent and hence valid when (y ’,.z’) is replaced b y (~b’,~~’)

in (10). For representations involving eigenfuuctions in z,

one must impose the restriction y > yo + b cos a (for the

multiple reflection representation, only the incident field

term must be so restricted) ; for representations involving

eigenfunctions in y, one requires z > ZO+ b sin CS.These

are the previously stated conditions that describe the

equivalent source region in the y and z domains, respec-

tively. It can also be shown that the asymptotic results

obtained for various integrals arc the same as wheri

(~b’,~b’) is substituted for (~’,z’) in the asymptotic solu-

tions for the line source field. This observation applies

in particular., to the continuous spectrum contribution to

the field expressed in terms of modes propagating along A

It is known [13] that this contribution, descriptive of

lateral waves (see Fig. 8), is 0[1{ (z – z’) ]-312 with r~-

spect to the guided waves excited by a line source. This

justifies omission of the continuous spectrum contribution

as noted in Section IV-C.

When the line source is located outside the layer, the

preceding considerations arc applied to the Green’s func-

tion representations modified so as to account for the

changed source position [8, s~cs. 5.6 and 5.8].
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