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~ Rays, Beams, and Modes Pertaining to the Excitation
of Dielectric W aveguides

LEOPOLD B. FELSEN, reLLOW, IEEE, AND SANG-YUNG SHIN

Abstract—The two~dimensional problem of excitation of an in-
homogeneous dielectric layer by a Gaussian beam is considered,

with emphasis on useful representations that treat the field either -

in terms of multiple reflections or in terms of guided modes. A
recently developed method is employed whereby the beam fields are
generated from line source fields by assigning a complex value to
the source coordinates. When applied to the asymptotic solution for
the line source field, this procedure furnishes a simple and quanti-
tative relation between line-source-excited ray optics and paraxial
beam optics. It also clarifies the role of lateral ray and beam shifts
for reflection at a boundary with incidence-angle-dependent reflec-
tion coefficient, especially when multiply reflected fields are con-
verted into modal form. Results are given for beams which are
reflected at both boundaries, reflected at one boundary and re-
fracted before reaching the other boundary, and trapped by refrac-
tion without reaching either boundary. In the first case, conversion
‘to modal form is more convenient at large distances whereas in the
latter case, paraxial beam tracking is preferable.

I. INTRODUCTION

OR a better understanding of relevant wave phe-

nomena, there has been a concern in the literature on
integrated and fiber optics with the relation between
rays and modes in dielectric waveguides, with the ray-
optical interpretation of modal phase and group velocity,
with the propagation of beams, and with other aspects of
modal propagation [1], [2]. The purpose of the present
paper is to present a unified treatment of these phenomena
by considering explicitly the problem of excitation of a
dielectric waveguide by a localized source, such as a line
or point source and a well-collimated Gaussian beam. It is
found that consideration of the source problem inter-
relates various facets of wave propagation that have pre-
viously been considered separately and individually.
These facets include the tracking of an obliquely incident
beam by multiple reflection, the significance of lateral
ray and beam shifts in the reflection process, the conversion
of multiply reflected fields into waveguide modes and the
role of the lateral shifts in the conversion process, the
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direct excitation of waveguide modes, and finally, the
range where one field representation (multiply reflected
or modal) is preferable over the other.

The specification of a localized source is essential to the
present study, since the resulting excitation of a spectrum
of wavenumbers makes possible the systematic explora-
tion of the wave processes alluded to above. For two-
dimensional or three-dimensional wave problems, a line
source or point source, respectively, forms a suitable
prototype. Such sources, being omnidirectional, actually
give rise to a richer variety of wave phenomena than those
encountered when the wavenumber spectrum is narrowly
confined, as in a well-collimated beam. However, by a
recently developed method [37], [4], it is possible to con-
vert incident cylindrical or spherical wave fields into two-
dimensional or three-dimensional paraxial Gaussian beams,
respectively, on replacing the real source coordinate by a
complex value. Thus previously developed Green’s func-
tions for dielectric waveguides can be utilized directly
for construction of field solutions when the incident excita-
tion is a Gaussian beam. In following this procedure here,
heavy reliance is placed on an earlier publication [5] deal-
ing with rays, modes, ray-modal conversion, etec., of two-
dimensional fields in an inhomogeneous layer with im-
pedance walls, excited by an omnidirectional source or by
a source with known far zone radiation pattern f(8).
For simplicity, the analysis will be restricted to the two-
dimensional case, with only a brief mention of the gen-
eralization to three dimensions.

Turning now to the actual contents of this paper, we
begin in Section IT with a summary of the complex-source-
point method when applied to a point or line source in free
space; this demonstrates the ability to generate an in-
cident Gaussian beam from a spherical or cylindrical wave
by assigning to the source a complex location. To under-
stand the effects of waveguide boundaries when a beam
is injected through an open end (or through an opening
in one of the walls), we consider first a homogeneously
filled, perfectly conducting, multimode parallel plane
waveguide (Section II1). By using Green’s function repre-
sentations either in the form of a mode series or an image
series, and then employing the complex-source-point
method, one obtains at once the modal excitation coeffi-
cients due to an incident beam, the fields described by
tracking of multiple reflections, and an assessment of
parameter ranges where one representation is preferable
to the other. It will come as no surprise that the most
strongly excited waveguide modes are those whose plane
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wave constituents propagate in directions 6, closest to
that of the incident beam. It is also found that with re-
spect to modal excitation, the beam acts like a directive
source with a radiation pattern that decays exponentially
away from the beam axis.

In Section IV the problem is generalized to an in-
homogeneous layer bounded by surface impedance walls.
As mentioned earlier, this model is chosen because all of
the relevant formulas pertaining to excitation by an iso-
tropic or directional line source have already been de-
veloped [5]. These formulas, summarized in Section IV-A,
comprise rays and modes which 1) are trapped in the
vicinity of the layer axis by refraction due to the medium
inhomogeneity, 2) are reflected at one boundary but re-
fracted before reaching the other boundary, and 3) are
reflected at both boundaries. Cases 2) and 3) involve
lateral shifts of reflected rays, which are discussed in
detail. It is found that while lateral shifts should always
be included in the description of reflection of rays emanat-
ing from a localized source, the effect of such shifts is
generally insignificant when only a few reflections are in-
volved; however, the correct description of the cumulative
effect of many reflections, and especially, the conversion
of multiply reflected ray fields into modal fields requires
retention of lateral shifts. Since conventional geometrie-
optical tracking procedures for phase and amplitude of the
quasi-optic field can easily be adapted to the laterally
shifted paths [6], [7]], this poses no hardship. The effect
of replacing the real source point in the formulas of Sec-
tion IV-A by a complex value is examined in Section IV-B.
It is found that when the medium inhomogeneity can be
neglected in the vicinity of the waist of the incident beam,
the complex-source-point field decays in Gaussian fashion
away from a central ray, the beam axis. Depending on the
choice of the complex source point, the beam axis may
belong to any of the categories 1), 2), and 3) noted above.
The beam characteristics for these cases are discussed,
together with the excitation of modal fields. In particular,
it is shown that the paraxial beam field can be described
completely in terms of parameters pertaining to the line-
source-excited field on a ray coincident with the beam
axis. This observation provides a direct and quantitative
correspondence between paraxial beam optics and line-
source-excited ray optics.

The results obtained for beam excitation of an inhomo-
geneous layer with impedance walls apply also when the
layer boundaries are formed by a discontinuity in refrac-
tive index, provided that the beam is incident at an angle
that assures the occurrence of total reflection at the bound-
aries (or continuous refraction before reaching the bound-
aries). In that event, excitation of the continuous mode
spectrum is negligible (see Appendix III). Treatment of
the discrete mode spectrum is the same as for the layer
with impenetrable impedance walls provided only that the
impedance-wall reflection coefficients are replaced by the
interface reflection coefficients. These considerations are
summarized in Section IV-C. General conclusions to be
drawn from this study are presented in Section V.

II. THE INCIDENT BEAM FIELD

The time-harmonic scalar three-dimensional Green’s
function, which satisfies the radiation condition in a homo-
geneous unbounded lossless medium with wavenumber £,
is given by

exp (k@)

Gr(r,y') = 0

(1)

where @ is the distance from the source point 7’ to the ob-
servation point 7,
Q=lr=r|=[@=2"+ @~ y)*+ (- )7
(1a)

and the time dependence exp (—iwt) has been suppressed.
When the source point 1’ is assigned the complex value
n' = (0,0,tb), b > 0, the real distance @ is replaced by
the complex distance

G=[+ 9+ =BT RG>0 (2)

which may be approximated in the paraxial region near
the z axis as
x2 + y2

QbNZ—’Lb-}-'z'—(-z_u;)

PHpL2+R (3)

and in the far zone as

r>> Lbe r= (a2 + 4+ 22

(4)

where cos @ = z/r. Substitution of (3) or (4) into (1)
shows that the complex-source-point solution Gy(r,r’)
represents in the region z > 0 a field that behaves like a
rotationally symmetric Gaussian beam in the paraxial
region about the beam axis 2z, with amplitude exp (kb)
on the axis. The exponential dependence exp [—%(a? +
y?)/2b] in the z = 0 plane identifies that plane as the
focal plane and (2b/k)'? as the commonly defined half
width w, at the waist of the beam. Retention of (2) in (1)
provides an exact solution of the scalar wave equation that
is valid at arbitrary observation points (except z = 0,
2? + ¢ = b?) and satisfies via the assumption Re @, > 0
the radiation condition at all observation angles at in-
finity (i.e., the fields are outgoing in z < 0 and z > 0);
by alternative definitions of the principal branch of (s,
one may generate a field that is incoming in z < 0 and
outgoing in z > 0 and thereby describes a Gaussian beam
for all z. Since we shall be interested only in the perturba-
tion of the beam after it has passed through its focus, the
specification Re @, > 0 is adequate and describes in a
simple manner the analytic continuation of Q from real r’
to complex 1’; the field may accordingly be viewed as
having been established by an equivalent source distribu-
tion that occupies the region 2% 4+ 42 < b% in the z = 0
plane. :

It is easily verified that when the complex source point
is chosen as

Qs ~1r—1ibcost

rbl =T + 28 (5)
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Two-dimensional beam corresponding to G+(R, R, + ib).

Fig. 1.
The focus lies at R, and the beam axis along b.

where r, and b are real vectors, the resulting field G;(r,n")
represents a beam whose focus is at 7, and whose axis is
along b.

By analogous considerations (Fig. 1), one establishes
for the two-dimensional (z-independent) case that the
two-dimensional scalar Green’s function

GRR) = HHO0Q) Q= [ —y)+ &~ )P4

(6)

furnishes a two-dimensional beam solution when the dis-
tance § from the real source point R’ = (y',2') is replaced
by the distance @ from the complex source point R, =
R, + 1b. To achieve a collimated beam, it is assumed that
kb >> 1, where b = | b |, so that the asymptotic approxi-
mation '

exp (thQs + im/4)
2(2xk@p)2

G (RRy) ~ Re@ >0 (7)
is adequate. However, as for the three-dimensional case,
G4(R,Ry) in (6) is an exact solution of the two-dimensional
wave equation.

Vector beam fields may be generated from expressions
for the vector fields due to an electric or magnetic current
element on replacing the real source point location 7’ by
the complex value 1" in (5). If the vector beam is to have
a TEM field on the beam axis b the orlenta’olon of the
current element must be perpendicular to b [4].

III. BEAM-TO-MODE CONVERSION IN A
WAVEGUIDE WITH PERFECTLY
CONDUCTING BOUNDARIES

To illustrate the mechanism of waveguide mode excita-
tion when a beam is launched into a region with parallel
plane boundaries, it is appropriate to consider first a
homogeneously filled waveguide with perfectly conducting
walls. For simplicity, we deal only with the two-dimen-
sional case. Since the complex displacement of the source
coordinate of an incident cylindrical wave generates an
incident beam that is Gaussian in the paraxial region, the
beam excitation of a parallel plane waveguide with bound-
arigs at y = 0, d follows at once from the known solution
of the two-dimensional Green’s function for that region
by |analytic continuation from R’ to complex R,. Two
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alternative representations are of interest. The first,

- W12 m7ry . may’ exp [ikrn(z — 2) ]
GRR) =4 ‘E d d Etm ’
z2>2 (8)
where d is the waveguide height and
= [1 — (mwx/kd)? ]2, Im7, >0,

expresses the field as a superposition of guided modes.
The second,

Gi(RR) = i% {H,® (kRq) + Ho® (kR.2)
— H,(kRw) — H,® (kRu) }
Ra = {(z— 2N+ (2sd + y — y' )1~
Ro= {(z—2)+ (2(s+ 1)d +y" —y)*}"”
Ri = {(z — 2)2 + (2sd +y + )2}
Ru={(z—2)+ 26+ Dd—y—y»}" (9

expresses the field as a superposition of image fields in an
unbounded medium. The Green’s function Gy vanishes
on the waveguide boundaries and is therefore proportional
to the single-component electric field Z..

To convert the incident cylindrical wave into a Gaussian
beam with focus at (y.,2.,) and axis inclined at an angle

a with respect to z, we let
y >y’ =y, -+ b sin « 7 — 2z =2z, + 1 cosa,

b >0, 0<a<i3r (10)

to obtain from (8), for z > z,,

- s m exp [thrn(z — 2,
Gu(R.Ry) = Z ;ry p [ Tk(z 20) ]
m—l Tm

[exp (immy,/d) exp (kb cos (6, + @))
— exp (—immy,/d) exp (kb cos (6, — a))]
(11)

where 8, = cos™ 7, = sin! (mx/kd) is the propagation
angle, measured counter-clockwise from the positive z
axis, of the constituent plane waves that synthesize the
mth mode. The series is convergent provided that the
exponential terms decay as m — «. Since 7, - t(mn/kd)
as m — oo, this implies the restriction

2> 2, + bsina (12)

on the analytically continued Green’s function in (11);
i.e., the axial coordinate of the observation point must be
large enough to be outside the equivalent source distribu-
tion for the beam (see Fig. 1). Evidently, the mth propa-
gating mode is optimally excited when the beam direction
a coincides with the mode angle 6,. For a highly colli-
mated beam with large kb and for « % 0, one may omit
the first term inside the square brackets in (11) to obtain
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Fig. 2. Beam excitation of parallel plane waveguide with perfectly
conducting walls. In the image representation, the primed images
may be ignored. After N reflections the beam width is Ly =
2(2/kb)2Ry /sin . The multiply reflected beam is shown shaded.
When the beam is injected from the outside (see dotted portion of
the incident beam), the results in (9), with (10), remain applicable
provided that the illumination at the edges is negtigible.

Gi(R,R)/) ~ X sin (ky sin 6,) exp (tkz cos 6m) Am  (13)
m=1
Am = exp [—ik(y, sin 8, + 2, €08 b,,) + kb cos (6 — )]
(=1)
2kd cos 0, (13a)

where 4,, is the mth mode excitation coefficient.

When (10) is employed in the image representation
(9), the field in the waveguide region is synthesized by
superposition of image beam contributions which account
for the effects of multiple reflections (Fig. 2). Since the
beam source is highly directive, the field is confined to
the vicinity of the multiply reflected beam axis. By this
consideration, one may omit the primed images altogether;
their contribution in the region 0 <y < d is negligible
when a 5 0 (this corresponds to the transition from (11)
to (13)). Even the unprimed images contribute selec-
tively and may be ignored when the observation point
lies far from those portions of the multiply reflected beam
axis corresponding to them. If it is adequate to disregard
fields whose exponential amplitude lies below a prescribed
level, the fields of interest are confined to the shaded re-
gion in Fig. 2. One notes that a single term from the series
(9), with (10), is adequate to describe the field in any of
the singly shaded portions, while two terms are adequate
in overlapping shaded regions; the field in the unshaded
portions is so small that it can be neglected. If the wave-
guide is wide enough to permit the propagation of many
modes, the image representation (9) is preferable over the
modal representation (11) or (13) as long as there is little
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or no overlap among the multiply reflected beams. Since
the (1/¢) angular beam width in the far zone of any of the
image sources is 8, = 2(2/kb)'2, the projected width
Ly, parallel to the z-axis, of the beam originating at the
Nth image (i.e., after N reflections) is

Ly = 2(2/kb)*Ry/sin (14)

where Ry is the distance along the axis of the Nth image
beam from its focus to the waveguide region (see Fig. 2).
When Ly exceeds the interval L = 2d cot a between suc-
cessive reflections of the beam axis (see Fig. 2), the mul-
tiply reflected beam can no longer be resolved. As the
observer moves down the guide to z > zy, where the vi-
cinity of zy is defined by L & Ly, the field is synthesized
by an ever increasing number of image contributions in
(9). The collective effect of these image fields is eventually
represented more compactly by the modal sum in (13).
The modal sum thus accounts for the accumulation of
many multiple reflections of rays whose initial direction
les within an angular interval of 0(8,) about the beam .
axis # = . The direct conversion of the image sum into
the modal sum may be accomplished by the Poisson trans-
formation, which thus provides the means of passing from
one representation to the other. Since the image represen-
tation (9) is intimately related to a ray-optical treatment
(use of the asymptotic form for the Hanke] functions (see
(7)) actually reduces (9) to the ray-optical solution con-
structed by tracking multiply reflected rays), the Poisson
transformation permits the conversion of ray solutions
into modal solutions and, via the analytic continuation
specified in (10), the conversion of beam solutions into
modal solutions. This aspect is exploited in the next sec-
tion.

Although in the preceding discussion the beam source
is located in the interior of an infinite waveguide, one
may use the same results when the waveguide is open-
ended and the beam is injected from the outside, with the
focus lying inside the parallel plane region (see Fig. 2).
The validity of this statement follows from the highly
directive properties of the incident beam. If the focus lies ‘
outside the parallel plane region, a divergent incident
beam may be regarded as being generated by one of the
image sources. When necessary, the interaction of an
incident beam with the edges of an open-ended waveguide
can be accounted for by use of complex source coordinates
in a ray-optical treatment of the edge diffraction problem,
but this will not be considered here [4].

It is appropriate to mention also a direct procedure for
constructing the fields excited in a waveguide by an in-
cident beam. From (7), (10), and the two-dimensional
equivalent of (4) (see also Fig. 1), it is noted that the
beam may be regarded as a distributed source with far
zone radiation pattern

f(8) = exp [kb cos (@ — 0)]

where § = « defines the beam axis. It is known that when
a source distribution with far zone pattern f(6) is placed

(15)
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at the location R, into a parallel plane waveguide, the
field in the waveguide is given by [5]
© may exp [thrn(z — 2,) ]

- 1 .
G1(R,Ro) = ﬁ Z Sin d
m==1

-Lexp (immyo/d)f(—0m)
— exp (—immay,/d)f(6n) ]

where 6, is the previously defined modal propagation
angle and z is restricted to values outside the source region.
Since the latter requirement is the same as (12), it is
evident that (15) and (16) yield the solution (11) that
was obtained by the complex-source-point procedure.
Thus the modal excitation problem may also be ap-
proached by viewing the beam as a highly directive
source, but this procedure lacks the versatility of the
complex-source-point method for studying other aspects
of the beam. problem.

If G, denotes the Green’s function whose normal deriva-
tive vanishes on the boundary (i.e., G, is proportional to
a single-component magnetic field H,), the expression in
(8) is modified by the change of sines to cosines and ex-
tension of the summation from m = 0 to m = «; an ad-
ditional factor (1/2) accompanies the m = 0 term. In
the image representation (9), the minus signs are changed
to plus. Correspondingly, the complex-source-point solu-
tion (11) contains an m = 0 term, has the sine replaced
by cosine, and the minus sign between the two terms inside
the square brackets replaced by plus (the modifications
apply also to (16)). When « 3 0, this leads instead of
(13) to ‘

kvm

(16)

G2 (R,Ry) ~ LA, exp (ikz) + 3 cos(ky sin 6,.)

m=1
-exp (1kz €08 6n) Am  (17)
where 4,, = — A,.. The image representation follows from

the modified form of (9). The interpretation of these re-
sults is the same as for the polarization associated with
G except that the present case admits of an axially propa-~
gating (TEM) mode with 6, = 0.

IV. BEAM-TO-MODE CONVERSION IN A
BOUNDED INHOMOGENEOUS LAYER

The simple example in Section II1 of a homogeneously
filled parallel plane waveguide with perfectly conducting
walls has served to illustrate relevant propagation mecha-
nisms when the incident field is a well-collimated Gaussian
beam. These mechanisms remain operative in the more
general case of a layer whose refractive index varies con-
tinuously in the transverse direction. Nonradiating guided
modes in such a layer can exist due to trapping by an ap-
propriaterefractive index inhomogeneity and (or) due to the
presence of discontinuous changes in refractive index;
in weakly inhomogeneous media, the latter may be de-
seribed by an incidence-angle-dependent plane wave re-
flection coefficient. As before, the analysis is performed by
introducing a complex source point location into the ex-
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pressions for the fields due to a line current. Since we are
interested only in the excitation of nonradiating guided
modes (for a discussion including the continuous spec-
trum, see Appendix III), it suffices to consider the prob-
lem of an inhomogeneously filled waveguide bounded by
impedance walls. The mechanism of excitation of guided
modes in such a structure by a highly directive beam re-~
mains applicable when the impenetrable surface impedance
walls are replaced by penetrable boundaries across which
the refractive index is discontinuous, provided that the
incident beam at these boundaries is totally reflected and
that the surface impedance reflection coefficient is re-
placed by the interface reflection coefficient. Since the
impedance wall problem has been treated previously [5],
relevant formulas can be extracted directly for the present
discussion.

A. Line Source Field in an Inhomogeneous Layer with
Impedance Walls

Line source excitation of an inhomogeneous layer with
refractive index n(y), bounded by impedance walls at
y =y and y = ys, was previously formulated in terms
of a continuous spectrum of plane waves with z dependence
exp (tkrz), —o < 7 < = [, eq. (1.8)7].' The resulting
integral representation was then converted (by contour
deformation about the pole singularities (zeros of the
resonance denominator) in the integrand) into a series of
modes guided along z [5, eq. (1.13)]; for the special case
of » = 1 and perfectly conducting walls, this series re-
duces to the one in (8) (or its counterpart for Gy). Alter-
natively, by series expansion of the resonance denomina-
tor, the plane wave spectral integral was represented as
a series of simpler integrals [5, eqs. (1.20) and (1.21)7,
each of which describes a single reflected constituent in
a multiple reflection decomposition of the line source field;
for the special case in Section ITI, these integrals are recog-
nized as Hankel functions and lead to the image repre-
sentation in (9) (or its counterpart for Gs). Assuming
that n(y) changes slowly over an interval equal to the
local wavelength, the multiple reflection integral solutions
were simplified by asymptotic approximations that pro-
vide a direct ray-optical interpretation.

For the mode series, the result for z > 2’ was shown
to be [5, eq. (1.13a) ]

GRR) =3 TN &, (1) B, (y") exp [ikrm(z — 2)]
(18)
Nt = " ®,.2(y) dy. ‘ (18a)

y1

The eigenfunctions . (y) satisfy the modal equation

{dii_z + B (y) — Tmzj} &n(y) =0 (19)
Y .

1 Equations in [3] are denoted by a prefix (I). The x coordinate in
[5] has here been replaced by .
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subject to the boundary conditions

P,
('i"‘_‘ = :*:’LkZI 2'I’m

7 (19a)

at y = 41
where Z; s are constant surface impedances at ¥y = yi.2.
The multiple-reflection representation

- > S Ii(RR) (20)

=1 s=0

G(R,R")
'~ involves integrals of the type (see [5, eq. (1.23)7)
L;(R,R')

o / exp [the;(R,R' ;1) ] exp {iPs[¢1(7),d2(r) ]}
47 [n2(y) — P4 [n2(y') — 2]

dr

(20a)

wherein appropriate asymptotic forms of the wave func-
tions have already been utilized and exp (i¢1) and
exp (i¢:) are the plane wave reflection coefficients for the
impedance boundaries at y; and g, respectively. Hence-
forth, the wall impedance is assumed to be nondissipative
8o that ¢, are real. The evaluation of (20a) by the sta-
tionary phase method can be performed in two ways,
which differ by the inclusion, or not, of the second ex-
ponential in the phase of the integrand (note that the
second exponential does not contain the large wavenumber
k). When the second exponential is included in the phase,
the result is as follows:

Ij ~ Sei(7e5) €xp [ihdei(725) ] €XD {1Poi[b1(75) s02(75) 1}
(21)

where the dependence on R and R’ has been omitted. For
7 = 1, one hags explicitly

va(r) = [ Do) = ropnag

v<

+ 2s /m [(n*(§) — 7212 ds + 7(z — 2/} (21a)

yi

Pal[d’l(ﬂﬂ) )¢2(‘Tsl)] = 3[4’1(7'81) + 4’2(781)] (21b)

/4
Sa(r) = T2 LN La(y) = w2 Dn(y) - ri3
&, B
[ 67'21 + % ; (é1 + ¢2) ]1,} (21¢)

where 9%,,/37% is calculated by direct differentiation of
(21a). The value of 7., abbreviated as 7., is determined
$0 as to assure that the ray originating at R’ passes through
the observation point R. This requirement is met if 7,
satisfies the ray equation, which is identical with the con-
dition for stationary points in the integrand of (20a):

dd1
‘psl('fs) + (6 3 + aTs) 0.

The classification of the ray paths depends on the relative

(22)
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(b) j=2

(c)j=3 @ij=4

Fig. 3. Trajectories of rays that strike both boundaries. The
trajectories are defined by ray equations, e.g., (22) for j = 1, and
include a lateral shift (—1/k)de:/drs or (— 1/lc)d¢z/dn at ‘each
reflection. When the source point has the complex value in (10),
the trajectory with 6’ = « defines the beam axis.

caustic caustic
for s=0 for s=1
(a)
caustic
for s=1

caustic
fors=0

(b)

Fig. 4. Trajectories of rays that do not strike both boundaries.
The trajectories are defined by ray equations modified as stated
in the text. There is no lateral shift due to contact with a caustic.
When the source point has the complex value in (10), the dark
trajectories define the beam axis. (T'wo figures are omitted here,
which describe rays leaving the source in the direction y < y )
(a) Contact with one boundary. (b) Contact with neither bound-
ary.

orientation of source and observation points. For y > ¢/,
trajectories corresponding to various indexes j are shown
in Tig. 3. Field solutions pertaining to j = 2,3,4 take a
form similar to those for 7 = 1. The index s counts the
number of reflections experienced by the ray during its
travel from R’ to R. Note that the trajectory defined by
(22) includes a lateral shift at the boundaries. For each
index sj in (21), the form of the result depends on whether
the ray is reflected at the boundaries or is turned back by
refraction before reaching the boundaries. The expressions
in (21a)—(21e) pertain to the former case. When the ray
is refracted and does not reach the boundary at y;, there
is no lateral shift but contact with a caustic (Fig. 4). In
this case, one employs the phase change ¢ = —=/2 in
(21b); in (21c¢), one puts 8%;/d72 = 0, and understands
the imaginary part of the square root to be chosen as nega-
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Fig. 5. Ray paths with and without lateral shift.

tive when the quantity inside the braces is negative (i.e.,
for rays beyond the turning-point but before touching
the caustic; after a ray has touched the caustic, the quan-
tity inside the braces is positive). Moreover, y; in (21a)
is replaced by y, where y,, the y-coordinate of the turning-
point at which the ray is horizontal, is defined by n(ys) = 7.
(care must now be exercised in the calculation of 8%,1/97%;
see [87]). Analogous considerations apply when the ray is
refracted before striking the boundary at y.. The angle
9, of the ray trajectory with the positive z-axis is inferred
from Snell’s law

n(y) cos [6:;(y)] = 7. = constant. (23)

Thus the angle of departure 6,” of the ray at the source is
obtained from n(y’) cos 6, = 7.. It should be noted that
the classical ray tracing procedure can be adapted to the
shifted ray paths, and that the field in (21), etc., away
from the caustics (i.e., when S, is finite) can be con-
structed entirely by ray methods that utilize the phase
contribution along the shifted paths and energy conser-
vation in the corresponding tubes of rays [6], [7]. The
ray tube cross section varies inversely with S
When the second exponential in (20a) is regarded as an

amplitude factor, the stationary phase result for I, is
again given by (21), with the following modifications:
1) ¢1 and ¢: in (21¢) are replaced by zero; and 2) the ray
equation (stationary phase condition) in (22) is replaced
by

d

—A_‘l’sl(fx) =0 (24)

0%,
and 7; everywhere is replaced by 7. Thus (24) defines the
classical ray path without lateral shift, and (21) then
yields the conventional ray-optical field. Evidently,
75 # 7, for trajectories passing through R’ and R. It is
of interest to examine how the fields calculated from (21)
along a laterally shifted path (ABC in Fig. 5) differ from
those along the classical path (DE in Fig. 5). For a single
reflection, it is shown in Appendix I that when

G (L ) oo ] <1 o

where § is the coordinate at the boundary, both methods
of calculation yield the same result. For the special case
of a homogeneous medium with n = constant, (25) re-
duces to

n sin? G(de/d?.)?
2kQ
where @ is the total path length along the incident and

&1 % =mncosh (25a)
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reflected rays, and § is the angle of departure of the classi-
cal ray path at the source. Thus, for large k@ and bounded
(d¢/d#), one may compute the singly-reflected field by
either method. The agreement continues to hold for a
moderate number of multiple reflections where de¢/d7, in
the inequality of (25) or (25a) is multiplied by s and the
quantity inside the braces or @ is modified to account for
multiply reflected paths. However, discrepancies will arise
for large values of s when the above inequalities are no
longer satisfied. Since the field in the waveguide is syn-
thesized by ray contributions that have experienced
many reflections, it may be anticipated that use of the
shifted path is required; when s is large, the second ex-
ponential in the integrand of (20a) gives rise to rapid
phase variations that must be included in the stationary
phase calculation. This expectation is confirmed when the
multiply-reflected ray contributions are converted into
guided modes.

The conversion is accomplished by the Poisson trans-
formation, which expresses a sum of functions in terms
of a sum of their Fourier transforms. Since the sum over
sin (20) starts from s = 0, the relevant form of the Poisson
sum formula is

SPre) == X [ F() exp (—imp) 5. (26)

s=0 T m=—oo ¥ 0~
The required analytic dependence on the summation
index s is evidently satisfied by the functions I,; in (21).
When (26) is applied to (20), with (21), and also to the
contributions from the other ray types j = 2,3,4, the
resulting integrals can be evaluated by the stationary
phase method. The procedure has been described pre-
viously [5]. It is found that, for large observation dis-
tances z, the Poisson-transformed ray series yields the
asymptotic approximation of the exact guided mode series
(18). The asymptotic approximation here implies that
the eigenfunctions &, (y) are replaced by their Wentzel—
Kramer—Brillouin (WKB) forms, which describe the mode
behavior in a slowly varying medium:

D, (y) ~ An*(y)

‘ y1
+ i exp {itﬁl — 2k [n(§) — w2 ]V dé} An(y)
Yim
(27)
where y1,, is defined by n(ym) = 7

An(y) = [0 (y) — w2704

K
.+ exp {ik/ [n2(8) — rm2]V2dE — i7r/4} (27a)
Ylm

and the asterisk denotes the complex conjugate. These
formulas are valid when the modal turning point yu.. is not
contained in the layer region y1 < y < y» (i.e., the mode
field fills the entire cross section (Fig. 6(a)). When the
mode field is refracted before reaching the boundary at
y1 (Fig. 6(b)), one has

B (y) ~ An*(y) + An(y) ym <y <y2 (28)
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and when the mode field is trapped entirely by refraction
(Fig. 6(c)), (28) applies as well in the region ym < ¥ < Yom.
In regions 41 < y < Yy of Fig. 6(b) and 51 < ¥ < yim,
Yo < Yy < y2 of Fig. 6(¢), the mode fields are evanescent
and will not be treated further (for their evaluation, see
[57). The eigenvalues 7, for modes characterized by
Fig. 6(a) satisfy the resonance equation (modal dispersion
relation) as specified by the saddle point condition in the
integral (26) when applied to (20), with (21) (see [5,
eqs. (1.30) and (I.15a)]):

[u(ra) + dura) T+ 2% [ [8(D) ~ 7] dg = 2em
(29)

where m is a positive integer. For modes described by
Fig. 6(b), one replaces ¢; in (29) by the mode caustic
phase shift (—=x/2) and y1 by yin. For modes described
by Fig. 6(c), one replaces ¢1 and ¢ by (—=/2), y1 by Y1m,
and ys by yem. When ¢y or ¢2 are replaced by (—#/2), it is
implied that the caustic lies far enough from the wave-
guide boundaries to render evanescent field interaction
with these boundaries negligible; if this is not the case,
one must retain a corrected form of ¢;. Finally, the nor-
malization factor is found to be (see [5, eq. (1.19) ]):

—_ 2%’6 Tm‘N’m2 ~ — MlemDm (y1;y2; ¢1;¢2) ’

for Fig. 6(a) (30a)
~ —4kDn (Y1myy2; —7/2,¢2),
for Fig. 6(b) (30Db)
~ —4kDm (Y1mYom; — 7/2,—7/2),
‘ for Fig. 6(c) (30¢)

where Ry, is the factor multiplying 4..(y) in (27), and

’ ™ d§ L9
D (0,b;1,42) = /a T8 — ni TR~ Sk om (¢1 + ¢0).

(30d)

The asymptotically approximated mode series then follows
from (18) on substitution of the three types of mode fields
corresponding to Fig. 6(a)—(c) ; when the refractive index
profile is such as to eliminate mode trapping as in Fig.
6(b) and (or) (c), one omits the corresponding modal con-
tribution.

The modal resonance equation (29), or any of its modi-
fied forms as discussed above, represents the asymptotic
approximation (in a slowly varying medium) of the
rigorous equation for the modal eigenvalues (see [5, eq.
(I1.12) ). This result was obtained by converting the field
contributions deseribed by laterally shifted ray trajec-
tories into modal form. With reference to the asymptotic
evaluation of integral expressions for the field, it has been
necessary to include the exp [2P;;(¢1,¢2) ] term in the
phase of the integrands when dealing with (20a) and (26).
If this term is not included in the phases of (20a) and
(26) (corresponding to use of the classical geometric-
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Tm= n{y,) cos 85" = n(y,) cos §?'

N
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Fig. 6. Upgoing and downgoing ray congruences for trapped
modes. (a) Mode trapped by reflection. (b) Mode trapped by
refraction and reflection. (¢) Mode trapped by refraction. The
boundary y; in (b) and the boundaries y; and y; in (¢) may be
removed without substantially affecting the mode behavior.

optical ray paths in (24)), then one may show that the
resulting resonance equation is

! / " e — £ dE = ma (31)

which differs from the correct form in (29) whenever
¢12 5% 0. If the exp [iP,;(é1,62) ] term is excluded from the
phase of (20a) but included in the phase of (26), one ob-
tains a resonance equation as in (29), but with an addi-
tional term that causes the equation to be dependent on
the source and observation point coordinates. While this
additional term may be negligible under certain condi-
tions, the formulation suffers from internal inconsistencies.

It has thus been shown that conversion of source-excited
ray fields into modal fields requires use of laterally shifted
ray trajectories. Since the ray trajectories emanating from
the source also describe the local energy flow, and since
the shifted trajectories are required for extraction of the
correct modal dispersion equation, it may be expected
that the group velocity of a modal field is consistent with
tracking along shifted modal rays that are defined by the
characteristic angle 6, = cos™ [n(y) /s ]. This has been
confirmed recently by an alternative analysis of modal
fields in a homogeneous layer [9].

B. Beam Fields in an Inhomogeneous Layer with Impedance
Walls

When the real source point R’ = (y,2’) is replaced by
the complex source point Ry’ = (1/,%’) in (10), the in-
cident field in a weakly inhomogeneous medium may be
inferred from the s = 0 term in (21), with y< and y- re-
placed by ¥’ for y > y, and y < y,, respectively. The
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" —

Fig. 7. Coordinates for calculation of paraxial beam field: y =
Yo — d cos 8, 2 = 2, + d sin 6,.

parameter 7, defined in (22) is now complex; we shall
denote 7, = , when b > 0. If the medium near R, varies
negligibly over a length interval equal to b sin «, one may
approximate n(y") &~ n(y,) and

[ e -

wot+ibsina
) |
~ [ () — 12 dg — Blr(y) — 721 sin .
o

(32)

It may then be verified by direct substitution that =, =
7, = n(y,) cos a is a (real) solution of (22) when the
observation point R = R, lies on the ray that leaves the
point R, along the b direction. This ray is the beam axis
(see Figs. 3, 4, and 7) on which | exp (kys1) | assumes
its maximum value. For complex 7, corresponding to ob-
servation points off the beam axis, [‘exp (#k¥s) | de-
creases, and in the paraxial region near the beam axis, the
decay is Gaussian. This property is maintajned when
s 5% 0 so that the representation in (21) yields a multiply
reflected beam solution in an inhomogeneous layer. For
observation points near the beam axis, the solution for
I, in (21) is simplified to (see Appendix IT):

Ta(m) ~ Su(m) exp [ikpa(r)]

- exp {is[¢1 (7o) + ¢2(7.) I} (33)
where
¢sl(’7'b) = Kbsl(Rc;Ra;To) - 'Lbn(yo)
d2 b -1
+ 2 sin? 6, [E " n(y,) sin? a] (33)
__ €Xp (li-;r/4)
Salm) ~ ~(8ek) {—n(yc)n(yo)
. . b -2
.+ sin 4, sin « [—E -+ W]} (33b)
92 s 9
E=— (—9—;0—2 Va1 (RoyRoy70) — P a7 (614 ¢2). (33c)

If the phase function in (21a) is denoted by ¥a(R,R',7,),
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one may infer therefrom the phase function ¥, (R.,R,,7,)
in (33a) and (33c¢). The various geometrical parameters
are defined in Fig. 7, with d representing a distance meas-
ured perpendicularly from the beam axis. The exponential
amplitude of the field is obtained from (33a) as

| exp (ik¥a) | = exp [kbn(y,) — d?/W2]
where the squared 1/e beam width W? is given by

(34)

b?

— | sinf @ sin? 4,. (34
n?(y,) sin® a] e ( ,a)

2 — E [ 2

wr = 0 n(y.) | E* +
The results above apply to the case where the beam is re-
flected at both boundaries. From (34a), the beam width
expands with £, which quantity is proportional to (1/sin 6,)
times the cross section of the tube of rays surrounding -
the beam axis when the excitation is due to a line current
source (see comment after (23)). The remaining quan-
tities in (33) are likewise those encountered in the ray
optical treatment of the line source field. Thus the phase
and amplitude behavior of the paraxial beam field may
be inferred completely from the parameters describing
the line-source-excited ray-optical field along the ray that
coincides with the beam axis. Evidently, the directive
properties of the beam source diseriminate against some
of the ray species in Fig. 3 in a manner analogous to that
discussed in connection with Fig. 2. The utility of the
multiply-reflected beam solution may also be assessed in
the same fashion as described in connection with (14).

When the beam axis is refracted before reaching one
or both boundaries (Fig. 4), the field is still given by (33)
provided that one makes the modifications noted after
(22). The manner of derivation of the paraxial formulas
in Appendix IT invalidates the solution when the beam
axis becomes horizontal; however, (33) can be applied
to observation regions corresponding to nonhorizontal
beam directions. Since the line-source-excited ray system
possesses caustics whereon the ray tube cross section
vanishes [£ — 0 and hence Su(r,) — « in (21c)], the
ray-optical solution (21) cannot be employed there (due
to the coalescence of two stationary points when the ob-
servation point approaches a caustic, one requires a uni-
form evaluation of the integral in (20a) ; see [13]). How-
ever, the ecomplex-source-point solution in (33) remains
bounded when E — 0 and therefore still furnishes the
beam field behavior. From (34a) vanishing values of E
imply minimum (#z-projected) beam widths so that the
beam focuses whenever the beam axis touches a caustic
(or a focus). Thus the line-source-excited ray system and
its caustics or foci provide direct and quantitative informa-
tion on the periodic expansion and focusing properties of
beams that are trapped by the refractive index inhomo-
geneity in the layer. Because of the periodic focusing, the
field representation in (33) is adequate for long propaga-
tion distances and thus preferable to the guided mode
expansion.
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The excitation of guided modes by the incident beam is
obtained on replacing ¢’ and 2’ in (18) by v’ and &/, re-
spectively, in (10). In view of the assumption of slow
-variation of n(y) over a length interval equal to the pro-
jected beam parameter b sin o, one may replace @, (y’)
by its asymptotic forms in (27), (28), etec., and reduce
the integrals as in (32). It is then found that the field
solution for z > 2, + b sin a is given by (see also [5, eqgs.
(1.34) and (1.39)]):

- B, .
G’(R,Rb’) = % m ®,, () exp [ikrm(z — 2o) ]
(35)
where
Bm = f(eml)ul(ya)fm) -+ f( _Gm,)u2(yo:7m) (35&)
_ 1 dq)M<y0) /dyo
U2 (YorTm) = 2 [Q)M(yo) + ikn(yo) sin em,:l (35b)
and
f(6,") = exp [kbn(y,) cos (a — 6x')]
€08 0, = mm/n(y,). (35¢)

Note that u; and ue are traveling wave functions propa-
gating along the (—y) and (+4y) directions, respectively.
As in (15), the beam acts like a directive source with
radiation pattern f(6) in a medium whose uniform prop-
erties are the same as the local properties of the inhomo-
geneous layer near the focus at R,. The most strongly
excited modes are those whose propagation angles at R,
are closest to the beam angle a. If & % 0, one may make
further simplifications as in (13). It should be emphasized
that while (35) is based on the assumption of a medium
with negligible variation over the equivalent source region
near R,, the medium variation elsewhere may be arbi-
trary. When the medium varies slowly everywhere, &,
and N,* may be replaced by their asymptotic approxima-
tion in (27), ete., and (30).

C. Beam Fields in an Inhomogeneous Layer with Trans-
parent Walls

When the layer is separated from a surrounding low
refractive index medium by interfaces at y; 2 across which
the refractive index is discontinuous, the spectrum of
modes guided along z contains a discrete and a continuous
part. Some of the rays in Figs. 3 and 4(a) that reach the
boundaries will now give rise to transmitted as well as
reflected rays. However, rays that strike the boundaries at
incidence angles larger than the critical angle are totally
reflected, and their behavior is the same as for reflection
at an impedance boundary provided that ¢; and ¢, denote
the phases of the reflection coefficients for the transparent
interface. When the incident field is a totally reflected
beam, the fields corresponding to the lateral wave and the
fields that penetrate the exterior region are weakly excited
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beam axis

n

Fig. 8. Inhomogeneous layer with transparent walls. The re-
fractive indexes for the exterior media satisfy the conditions
n1 < n(y1), ns < n(y:). The lateral rays (dashed) and external
refracted rays (dot-dashed) are weakly excited when the beam
axis strikes the interfaces at angles greater than the critical angle
for total reflection.

and hence negligible (see Appendix I1I and Fig. 8). The
lateral wave fields are excited by the ray that impinges at
the critical angle of total reflection, and they shed energy
back into the slab region. Even when the source is an iso-
tropic line source, these fields, contributed by the con-
tinuous mode spectrum, are O (kz)~32 with respect to the
guided modes and are therefore negligible at large dis-
tances. The highly directive beam source further weakens
their contribution when the (totally reflected) beam axis
is not near the critical direction. Therefore, the fields in
the layer are still given by (33) or by the modal expansion
in (35); concerning the latter, the ®,, are now the eigen-
function for the inhomogeneous slab region.

V. SUMMARY

We have presented a study of the fields in a bounded
inhomogeneous layer when the incident field is a Gaussian
beam. The problem has been analyzed by a new method,
the complex-source-point technique, which converts exact
cylindrical wave solutions or asymptotic ray solutions into
exact or asymptotic two-dimensional beam solutions. For
this reason, detailed consideration has been given to the
Green’s function problem and to alternative representa-
tions of the line-source-excited fields. After it has been
established that a particular Green’s function representa-
tion can be continued analytically into a range of complex
source coordinates, the resulting solution provides the
beam-excited field without further calculation. The present
investigation has been restricted to configurations wherein
the medium properties vary negligibly over the equivalent
source region representative of the complex location; in this
case, the incident beam is Gaussian and the beam axis
follows a geometric-optical ray trajectory. The nature of
the fields excited by a source at a complex location when
the medium varies appreciably over the equivalent source
region remains to be further explored.

Two different formulations have been employed that
represent the field either in terms of multiple reflections
between the layer boundaries or in terms of guided modes.
The utility of each, and the conversion from one to the
other, has been analyzed, and it has been shown how the
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cumulative effect of ray fields with many reflections can be
expressed in modal form. Because a well-collimated beam
represents a highly directive source, the complex-source-
point results have been related also to a previous study
that dealt with the radiation from a directive source dis-
tribution into a layered medium [5]. While both methods
yield the same expression for the excitation of modal fields,
it has been noted that the complex-source-point method is
more versatile in being able to deal also with other aspects
of the beam problem.

Since the present analysis treats the complete excita-
tion problem by a localized source, it is sufficiently general
to clarify the interrelation and interpretation of various
ray and beam propagation processes that have usually
been considered individually under less general conditions.
The following conclusions are worthy of emphasis.

1) When a boundary has an incidence-angle-dependent
reflection coefficient, the amplitude and phase of the line-
source-excited reflected field may be computed either by
the conventional geometric-optical method based on the
classical incident and reflected ray trajectories, or by a
modified geometric-optical method that utilizes a laterally
shifted path. The laterally shifted and conventional ray
paths correspond to the inclusion, or not, of the reflection
coefficient phases into the phase of the wave bundle that
synthesizes the ray field. When the field experiences many
reflections, the reflection coefficient phases must be so
included whenece the laterally shifted path is generally re-
quired.

2) When the multiply reflected ray fields in a plane
stratified layer are converted to modal form, the correct
modal dispersion equation is obtained from the laterally
shifted ray path model. Omission of the lateral shift gen-
erally leads to an incorrect dispersion equation.

3) Beam optics and source-excited ray optics have been
shown to be accommodated by the same formulation,
distinguished only by whether or not the source point
location is complex. The beam axis coincides with a real
ray trajectory. The paraxial beam field has a Gaussian
variation, but the solution remains valid also outside the
paraxial region. In this respect, the complex-source-point
method differs from other methods (for example, [11])
wherein the paraxial regime and Gaussian behavior are
assumed at the outset. The field properties in the paraxial
region can be inferred completely from those of the paraxial
tube of real rays, which is generated by a line source
located at the beam focus (see (33)). In particular, the
beam cross section expands and contracts with the paraxial
ray tube surrounding the beam axis. Thus the method pro-
vides a particularly simple and quantitative connection
between paraxial beams and source-excited paraxial rays.

4) When the line-source-excited ray field is trapped
by refraction instead of reflection, the ray family exhibits
caustics or foci. Maximum contraction of the z-projected
beam cross section takes place when the axis touches a
caustic or focus of the paraxial ray system. While the
asymptotic ray field solution due to a line source at a real
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location fails at a caustic or focus, the complex-sdurce—
point (beam) solution remains valid at these real observa-
tion points.

5) The complex-source-point method converts line-
source-excited fields into beam fields even when an initially
paraxial beam is strongly scattered by localized scattering
centers or by strong medium inhomogeneity. Examples
of the former process have been given elsewhere [4], [10];
applicability of the latter is illustrated by the modal ex-
citation result in (35).

Extension of the method to three-dimensional configura-
tions is straightforward. One must now examine three-
dimensional scalar and dyadic Green’s functions for scalar
and vector fields, respectively, and assign to the source
point a complex location as discussed in Section II. While
applications to three dimensions are still under study, it
is to be expected that the general behavior of alternative
representations of the beam fields deduced in this manner
will be analogous to that discussed here for the two-dimen-
sional case.

APPENDIX I

FIELD EVALUATION ALONG CONVENTIONAL
REFLECTED AND LATERALLY
SHIFTED PATHS

Referring to Fig. 5, with P = (y',2)) and P = (y,2),
the phase along the conventional path DE is given by

Wr) = ([ + )W(E) — AR dE A (e — ) (36)

with #; defined by d¢/97, = 0. The phase along the later-
ally shifted path ABC is

¥(rs) = ¥(r) + 1/E)o(7s)

where ¢ is the phase of the boundary reflection coeflicient
and 7, is defined by 84/dr, = 0. Since r, & #; (we shall
assume that d¢/dr. and d?¢/d 2 do not become excessively
large), one obtains by perturbation cxpansion that

_Ad¢/kd?s _ de/k dzs
Taglar: T o/erd

(37)

(38)

Te — Ts

When the expression for 7, = #, + § is substituted into
(37) and the phase is expanded to O(8%), one finds that
¥ (#) = ¢(7,), subject to the restriction in (25) and those
noted above.

An interesting observation follows when the complex
source point is used to convert the line source field into an
incident beam field. It has been found previously [12]
that use of the resulting complex value of 7. in the field
expression derived from the nonshified path predicts cor-
rectly the lateral Goos-Hinchen beam shift for a single
reflection. It then follows that a modification of this re-
sult might occur when one calculates the reflected beam
field from the complex value of 7, corresponding to the
laterally shifted path. However, because of the equiv-
alence shown above, the discrepancy is found to be neg-
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ligible for a single or a small number of reflections. For a
large number of reflections, the laterally shifted path is
required.

APPENDIX II
SOLUTION FOR 7, IN PARAXIAL REGION

Let ¢(R,R,/,r) denote the total phase so that (22) is
written 8¢/dr, = 0. Referring to Fig. 7, we expand ¢
near the beam center as

. _ oy oy
FRR,7) = D(RoRSyr) +2d+ 2 (r — 1)
ad o7,
N 1% ...
T a4 =) +3 a7 (r— 1o+

(39)

where all derivatives are evaluated at 7 = ,, R = R,,
d = 0. Note that (d¢/dr,) = 0 and 98¢/dd = 0. Then
from 6¢/d+s = 0, one finds

%/ dr, od
s — To — — T o= T 4
T T 550 Jor (40)
and, consequently,
- , . , d? (9%} / 91, 0d)®
Y(RR,7s) = (R, R,70) — s agjer: T
(41)

When the various derivatives of ¢ are evaluated, one ob-
tains the result in (33). The validity of the expansion
(39) requires that all ¢ derivatives are bounded. Since
%) /07, dd = cse b,, this restricts applicability of the re-
sult to beam axis directions that deviate from the hori-
zontal (unless d — 0).

APPENDIX III

VALIDITY OF COMPLEX-SOURCE-POINT
METHOD FOR LAYER WITH TRANS-
PARENT BOUNDARIES

When the line source is located inside the layer, the
eigenfunction expansion (plane wave spectral decomposi-
tion) with respect to zin [5, eq. (1.8) ] remains applicable.
However, in addition to spectral pole singularitics of the
resonance denominator (spectral poles exist only when the
layer can support trapped, nonleaky modes), the inte-
grand also contains branch point singularities. When the
integration path in the complex r-plane is deformed around
these singularities, one obtains a representation in terms
of eigenfunctions in y, which now includes a discrete spec-
trum of modes as in [5, eq. (I1.13a) ], corresponding to the
pole singularities, and a continuous spectrum of modes
arising from the branch points. The theory describing
these field representations may be found in the literature
[8, secs. 5.6 and 5.87, [13] (references in this Appendix
refer to a homogeneous layer; inhomogeneity does not
alter the basic conclusions).
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It can be shown that these ficld representations as well
as the multiple reflection representation in [5, eq. (1.21)]
based on the expansion in [5, eq. (1.20)7], remain con-
vergent and hence valid when (y',2') is replaced by (y',2)
in (10). For representations involving eigenfunctions in 2,
one must impose the restriction y > y, + b cos a (for the
multiple reflection representation, only the incident field
term must be so restricted) ; for representations involving
eigenfunctions in y, one requires 2z > 2, + b sin «. These
are the previously stated conditions that describe the
equivalent source region in the y and 2 domains, respec-
tively. It can also be shown that the asymptotic results
obtained for wvarious integrals are the same as when
(y',%') is substituted for (y,2’) in the asymptotie solu-
tions for the line source field. This observation applies
in particular to the continuous spectrum contribution to
the field expressed in terms of modes propagating along 2.
It is known [13] that this contribution, descriptive of
lateral waves (see Fig. 8), is O[k(z — 2/) T with re-
spect to the guided waves excited by a line source. This
justifies omission of the continuous spectrum contribution
as noted in Section IV-C.

When the line source is located outside the layer, the
preceding considerations arc applied to the Green’s furic-
tion representations modified so as to account for the
changed source position [8, sces. 5.6 and 5.87.
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